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Spectral theory and wave phenomena

The spectral theory is classically used to study resonance phenomena:

eigenfrequencies of a string, a
closed acoustic cavity, etc...

complex resonances of “open”
cavities (with leakage)

A new point of view: find similar spectral approaches to quantify the
efficiency of the transmission in a waveguide.

Waveguides play an important role in optical and acoustical devices.
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Time-harmonic scattering in waveguide

The acoustic waveguide: Ω = R× (0, 1), k = ω/c , e−iωt

∆u + k2u = 0

∂u
∂ν = 0

∂u
∂ν = 0

1

x

y

• A finite number of propagating modes for k > nπ:
u±n (x , y) = cos(nπy)e±iβnx βn =

√
k2 − n2π2

(+/− correspond to right/left going modes)

• An infinity of evanescent modes for k < nπ:
u±n (x , y) = cos(nπy)e∓γnx γn =

√
n2π2 − k2
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Time-harmonic scattering in waveguide

An example with 3 propagating modes:
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Time-harmonic scattering in waveguide

O ⊂ Ω
inf(1 + ρ) > 0
supp(ρ) ⊂ O

O
incident wave

reflected wave transmitted wave

• The total field u = uinc + usca satisfies the equations

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

• The incident wave is a superposition of propagating modes:

uinc =

NP∑
n=0

anu
+
n

• The scattered field usca is outgoing:

O+ +
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Scattering problem and trapped modes

By Fredholm analytic theory:

Theorem

The scattering problem is well-posed except maybe for a countable set T
of frequencies k at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

4 / 34



Scattering problem and trapped modes

Theorem

The scattering problem is well-posed except maybe for a countable set T
of frequencies k at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

O

4 / 34



Scattering problem and trapped modes

Theorem

The scattering problem is well-posed except maybe for a countable set T
of frequencies k at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, McIver, Nazarov, Vassiliev, ...

Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev)
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No-reflection

At particular frequencies k , it occurs that, for some uinc ,

x → −∞ usca → 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

O
+ +

OBJECTIVE

Find a way to compute directly the set K of no-reflection frequencies by
solving an eigenvalue problem.
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An illustration of no-reflection phenomenon

Incident field uinc = e ikx

Total field u

Scattered field usca

Perturbation ρ
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The main idea

The total field u always satisfies the homogeneous equations:

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

where k2 plays the role of an eigenvalue.

Trapped modes

For k ∈ T , the field of the trapped mode u ∈ L2(Ω).

O

No-reflection

For k ∈ K , the total field of the scattering problem u /∈ L2(Ω).

O+ +

How to set an eigenvalue problem adapted to K ?
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The main idea

A simple and important remark

For k ∈ K , the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

O
+ +

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed u will belong to L2(Ω).
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The 1D case

1

O

The 1D case has been studied with a spectral point of view in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,
Perfect transmission scattering as a PT -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows us to extend some of their results to higher
dimensions.

An additional complexity comes from the presence of evanescent modes.
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Outline

1 A main tool: the complex scaling (PML)

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

4 Extensions and comments
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A main tool: the complex scaling
(Perfectly Matched Layers)

Perfectly Matched Layers are classically used to solve scattering problems
in waveguides (Bécache et al., Kalvin, Lu et al., etc...)

OΩ−R Ω+
R

−R +R

We start by splitting the waveguide into three parts:

ΩR = Ω ∩ {|x | < R}, Ω+
R = Ω ∩ {x > R} and Ω−R = Ω ∩ {x < −R},

and we denote by:

u the total field in ΩR ,

u+ the transmitted wave in Ω+
R ,

u− the reflected wave in Ω−R .
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A main tool: the complex scaling
(Perfectly Matched Layers)

OΩ−R Ω+
R

−R +R

Reformulation of the scattering problem:

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ {|x | < R})

∆u± + k2u± = 0 (Ω±R )
∂u±

∂ν
= 0 (∂Ω ∩ {±x > R})

u = u+ and
∂u

∂x
=
∂u+

∂x
(x = R)

u − uinc = u− and
∂

∂x
(u − uinc) =

∂u−

∂x
(x = −R)
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A main tool: the complex scaling
(Perfectly Matched Layers)

OΩ−R Ω+
R

−R +R

Formulation with a scaling in Ω±R :

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ {|x | < R})

∆αu
±
α + k2uα

± = 0 (Ω±R )
∂uα

±

∂ν
= 0 (∂Ω ∩ {±x > R})

u = u+α and
∂u

∂x
= α

∂u+α
∂x

(x = R)

u − uinc = u−α and
∂

∂x
(u − uinc) = α

∂u−α
∂x

(x = −R)

with u±α (x , y) = u±
(
±R +

x ∓ R

α
, y

)
for (x , y) ∈ Ω±R .
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A main tool: the complex scaling
(Perfectly Matched Layers)

Ou− u+

−R +R

The magic idea of PMLs: take α ∈ C such that u±α ∈ L2(Ω±R ).

If α = e−iθ with 0 < θ < π/2, propagating modes become evanescent :

u+(x , y) =
∑

n≤NP
an cos(nπy)e i

√
k2−n2π2(x−R)

+
∑

n>NP
an cos(nπy)e−

√
n2π2−k2(x−R)

u+α (x , y) =
∑

n≤NP
an cos(nπy)e

i
√

k2−n2π2

α
(x−R)

+
∑

n>NP
an cos(nπy)e−

√
n2π2−k2

α
(x−R)

and the same for u−α with the same α.

+
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A main tool: the complex scaling
(Perfectly Matched Layers)

OPML PML

−R +R

Final PML formulation:

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ ∩{|x | < R}

∆αu
±
α + k2uα

± = 0 (Ω±R )
∂uα

±

∂ν
= 0 (∂Ω ∩ {±x > R})

u = u+α and
∂u

∂x
= α

∂u+α
∂x

(x = R)

u − uinc = u−α and
∂

∂x
(u − uinc) = α

∂u−α
∂x

(x = −R)

where ∆α = e−2iθ
∂2

∂x2
+

∂2

∂y2
and u±α ∈ L2(Ω±R ).
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Outline

1 A main tool: the complex scaling (PML)

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

4 Extensions and comments
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The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

O

Let us consider the following unbounded operator of L2(Ω):

D(A) = {u ∈ H2(Ω);
∂u

∂ν
= 0 on ∂Ω} Au = − 1

1 + ρ
∆u
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The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

O

Let us consider the following unbounded operator of L2(Ω):

D(A) = {u ∈ H2(Ω);
∂u

∂ν
= 0 on ∂Ω} Au = − 1

1 + ρ
∆u

The trapped modes (k ∈ T ) correspond to real eigenvalues k2 of A.
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Survival guide of spectral theory

A is an unbounded operator with domain D(A) ⊂ H (H Hilbert space)

Resolvent set and spectrum

ρ(A) = {λ ∈ C;A− λI is bijective from D(A) to H} and σ(A) = C\ρ(A)

The spectrum σ(A) contains the eigenvalues but not only....

Essential spectrum

If un ∈ D(A), ‖un‖ = 1, un ⇀ 0 and ‖Aun − λun‖ → 0 (Weyl sequence),
we say that λ ∈ σess(A).

The essential spectrum σess(A) is stable under compact perturbations.

Discrete spectrum

σdisc(A) is the set of isolated eigenvalues with finite multiplicity.

If A is self-adjoint, σ(A) = σess(A) ∪· σdisc(A) ⊂ R.
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The spectral problem for trapped modes

Trapped modes (k ∈ T ) correspond to real eigenvalues k2 of

Au = − 1

1 + ρ
∆u with D(A) = {u ∈ H2(Ω);

∂u

∂ν
= 0 on ∂Ω}

For the scalar product of L2(Ω) with weight 1 + ρ:

Spectral features of A

A is a positive self-adjoint operator.

σ(A) = σess(A) = R+ and σdisc(A) = ∅

Trapped modes are embedded eigenvalues of A !
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The spectral problem for trapped modes

Trapped modes (k ∈ T ) correspond to real eigenvalues k2 of

Au = − 1

1 + ρ
∆u with D(A) = {u ∈ H2(Ω);

∂u

∂ν
= 0 on ∂Ω}

For the scalar product of L2(Ω) with weight 1 + ρ:

Spectral features of A

A is a positive self-adjoint operator.

σ(A) = σess(A) = R+ and σdisc(A) = ∅
Trapped modes are embedded eigenvalues of A !

<eλ

=mλ

Solution: the complex scaling (Aguilar, Balslev, Combes, Simon 70)
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Complex scaling for trapped modes

Let us consider now the following unbounded operator:

D(Aα) = {u ∈ L2(Ω);Aαu ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aαu = − 1

1 + ρ(x , y)

(
α(x)

∂

∂x

(
α(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α(x) = 1where α(x) = e−iθ α(x) = e−iθ

−R +R
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Complex scaling for trapped modes

Spectral features of Aα

Aα is a non self-adjoint operator.

σess(Aα) = ∪n≥0{n2π2 + e−2iθt2; t ∈ R}
σ(Aα) = σess(Aα) ∪· σdisc(Aα)

σ(Aα) ⊂ {z ∈ C;−2θ < arg(z) ≤ 0}

(see Kalvin, Kim and Pasciak )

π2 4π2 9π2

2θ
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Some elements of proof

Proof of the second item:

σess(Aα) = σess(−∆θ) ∆θ = e−2iθ
∂2

∂x2
+

∂2

∂y2

=
⋃
n≥0

σess(−∆
(n)
θ ) ∆

(n)
θ = e−2iθ

∂2

∂x2
+ n2π2

=
⋃
n≥0
{n2π2 + e−2iθt2; t ∈ R}

Essential spectrum of Aα:

π2 4π2 9π2

2θ
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Some elements of proof

Proof of the third item: σ(Aα) = σess(Aα) ∪· σdisc(Aα)

The result follows from analytic Fredholm theorem because:

1 U = C\σess(Aα) is a connected set.

2 There is a point z ∈ U such that Aα − z is invertible (coerciveness).

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential
operators.)

π2 4π2 9π2

z 2θ
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Trapped modes and complex resonances

Discrete spectrum of Aα

Trapped modes correspond to discrete real eigenvalues of Aα !

Other eigenvalues correspond to complex resonances, with a field u
exponentially growing at infinity.

Spectrum of Aα:

π2 4π2 9π2

complex resonance
trapped mode

2θ
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Numerical illustration

The numerical results have been obtained by a finite element
discretization with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We put PMLs in the magenta parts:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.
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Numerical illustration

There are two trapped modes:
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Outline
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A new complex spectrum linked to K
with ”conjugate” PMLs

A simple and important remark

For k ∈ K , the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

O
+ +

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed total field u will belong to L2(Ω).

21 / 34



A new complex spectrum linked to K
with ”conjugate” PMLs

Let us consider now the following unbounded operator:

D(Aα̃) = {u ∈ L2(Ω);Aα̃u ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aα̃u = − 1

1 + ρ(x , y)

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α̃(x) = 1α̃(x) = e iθ α̃(x) = e−iθ

−R +R
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1 + ρ(x , y)

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

Spectral features of Aα̃

Aα̃ is a non self-adjoint operator.

σess(Aα̃) =
⋃

n≥0{n2π2 + e2iθt2; t ∈ R} ∪ {n2π2 + e−2iθt2; t ∈ R}
σdisc(Aα̃) ⊂ {z ∈ C;−2θ < arg(z) < 2θ}
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A new complex spectrum linked to K
with ”conjugate” PMLs

Typical expected spectrum of Aα̃:
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2θ

Spectral features of Aα̃
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A new complex spectrum linked to K
with ”conjugate” PMLs

Typical expected spectrum of Aα̃:

π2 4π2 9π2

2θ

Difficulty: C\σess(Aα̃) is not a connected set.

Conjecture

σ(Aα̃) = σess(Aα̃) ∪· σdisc(Aα̃) if ρ 6= 0
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Pathological cases

In the unperturbed case (ρ = 0):

−R +R

π2 4π2 9π2

2θ

All k2 in the yellow zone are eigenvalues of Aα̃!

Proof: Use the strechted plane wave as an eigenvector:

Aα̃u = k2u

for u(x , y) =


e ik(−R+(x+R)e−iθ) if x < −R

e ikx if −R < x < R

e ik(R+(x−R)e iθ) if R < x
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Pathological cases

And the same result holds with horizontal cracks !

−R +R

π2 4π2 9π2

2θ

All k2 in the yellow zone are eigenvalues of Aα̃!

Proof: Use the strechted plane wave as an eigenvector:

Aα̃u = k2u

for u(x , y) =


e ik(−R+(x+R)e−iθ) if x < −R

e ikx if −R < x < R

e ik(R+(x−R)e iθ) if R < x
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Link between the discrete spectrum and K

π2 4π2 9π2

2θ

For real eigenvalues, the eigenmode is such that

Ou is ingoing u is outgoing
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Link between the discrete spectrum and K

For k2 ∈ σdisc(Aα̃) ∩ R, the eigenmode is such that:

O
u is ingoing

+ +
u is outgoing

There are two cases:

Either u on the left-hand side contains a propagating part and it is a
case of no-reflection: k ∈ K .

Either u is evanescent on both sides and k is associated to a
trapped mode: k ∈ T .

Theorem

σdisc(Aα̃)∩R = {k2 ∈ R; k ∈ K ∪T }
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PT -symmetry (Space-time reflection symmetry)

Remember that:

Aα̃u = − 1

1 + ρ(x , y)

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)
and that

α̃(−x) = α̃(x)

Consequence

If the obstacle is symmetric in x :

ρ(−x , y) = ρ(x , y)

Aα̃ is PT -symmetric and its spectrum is stable by complex conjugation:

σ(Aα̃) = σ(Aα̃)
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Numerical illustration
for a rectangular symmetric cavity

0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

4

6

8

10
Square root of the spectrum

 

 

α
PML

=π/4

The spectrum is symmetric w.r.t. the real axis (PT -symmetry) .

There are much more real eigenvalues than for trapped modes.
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Numerical illustration
for a rectangular symmetric cavity

This is a representation of the computed modes for the 10 first real
eigenvalues and in the whole computational domain (including PMLs).
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Validation

Let us focus on the eigenmodes such that 0 < k < π:

First trapped mode:
k = 1.2355 · · ·

First no-reflection mode:
k = 1.4513 · · ·

Second trapped mode:
k = 2.3897 · · ·

Second no-reflection mode:
k = 2.8896 · · ·
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Validation

To validate this result, we compute the amplitude of the reflected plane
wave for 0 < k < π:

First no-reflection mode:
k = 1.4513 · · ·

Second no-reflection mode:
k = 2.8896 · · ·

There is a perfect agreement!
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No-reflection mode in the time-domain

Below we represent <e(u(x , y)e−iωt) with u...

...a no-reflection mode:

with the corresponding incident propagating mode:

We observe no reflection but a phase shift in the transmitted wave.
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Numerical illustration
in a non PT -symmetric case

Here the scatterer is a not symmetric in x , and neither in y :

We expect:

No trapped modes

No invariance of the spectrum by complex conjugation
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Numerical illustration
in a non PT -symmetric case
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The spectrum is no longer symmetric w.r.t. the real axis.

There are several eigenvalues near the real axis.
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Numerical illustration
in a non PT -symmetric case

Again results can be validated by computing R(k) for 0 < k < π:

k = 1.2803 + 0.0003i k = 2.3868 + 0.0004i k = 2.8650 + 0.0241i

Complex eigenvalues also contain useful information about almost
no-reflection.
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Outline

1 A main tool: the complex scaling (PML)

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

4 Extensions and comments
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Multiport waveguides junction

OBJECTIVE

Find (k , u) such that u is ingoing in some ports
and outgoing in the others.

For an N-ports junction, there are 2N−1 such problems and
corresponding spectra.
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Multiport waveguides junction

This is a bar-bar example of such problem:

There are two axes of PT -symmetry!
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Multiport waveguides junction
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Junction of Dirichlet waveguides

An interesting configuration is the junction of 2 different Dirichlet
waveguides.

Hh

Consequences

Now C\σess(Aα̃) is a connected set!

Our ”new” eigenvalues correspond in fact to classical complex
resonances in non-classical sheets of the Riemannn surface......
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Conclusion

There is still a lot of work to do !

Clarify the link between our new spectrum and classical resonance
frequencies.

Prove the existence of no-reflection frequencies (K 6= ∅), at least in
PT -symmetric cases.

Justify the numerics (absence of spectral pollution).

Find similar spectral approaches for other phenomena in waveguides
(perfect invisibility, total reflection, modal conversion, etc...)

...

These results have been published in:

Trapped modes and reflectionless modes as eigenfunctions of the same
spectral problem, Anne-Sophie Bonnet-BenDhia, Lucas Chesnel and
Vincent Pagneux, Proceedings of the Royal Society A, 2018.
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