A NEW COMPLEX FREQUENCY SPECTRUM FOR THE ANALYSIS OF TRANSMISSION PROPERTIES IN PERTURBED WAVEGUIDES

Anne-Sophie Bonnet-Ben Dhia¹
Lucas Chesnel² Vincent Pagneux³

¹ POEMS (CNRS-ENSTA-INRIA), Palaiseau, France
² DEFI team (INRIA, CMAP-X), Palaiseau, France.
³ LAUM (CNRS, Université du Maine), Le Mans, France

Toulouse, October 2018
The spectral theory is classically used to study resonance phenomena:

- **eigenfrequencies** of a string, a closed acoustic cavity, etc...
- **complex resonances** of “open” cavities (with leakage)

A new point of view: find similar spectral approaches to quantify the efficiency of the transmission in a waveguide.

Waveguides play an important role in optical and acoustical devices.
The acoustic waveguide: \(\Omega = \mathbb{R} \times (0, 1) \), \(k = \omega / c \), \(e^{-i\omega t} \)

\[\Delta u + k^2 u = 0 \]

\[\frac{\partial u}{\partial \nu} = 0 \]

\[\frac{\partial u}{\partial \nu} = 0 \]

- A finite number of propagating modes for \(k > n\pi \):
 \[u_n^\pm(x, y) = \cos(n\pi y)e^{\pm i\beta_n x} \quad \beta_n = \sqrt{k^2 - n^2\pi^2} \]
 (+/- correspond to right/left going modes)

- An infinity of evanescent modes for \(k < n\pi \):
 \[u_n^\pm(x, y) = \cos(n\pi y)e^{\mp i\gamma_n x} \quad \gamma_n = \sqrt{n^2\pi^2 - k^2} \]
An example with 3 propagating modes:
The total field $u = u_{inc} + u_{sca}$ satisfies the equations

$$\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)$$

The incident wave is a superposition of propagating modes:

$$u_{inc} = \sum_{n=0}^{N_P} a_n u_n^+$$

The scattered field u_{sca} is outgoing:
By Fredholm analytic theory:

THEOREM

The scattering problem is well-posed except maybe for a countable set \mathcal{I} of frequencies k at which trapped modes exist.
Theorem
The scattering problem is well-posed except maybe for a countable set \mathcal{T} of frequencies k at which trapped modes exist.

Definition
A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of
\[
\Delta u + k^2 (1 + \rho) u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)
\]
such that $u \in L^2(\Omega)$.
The scattering problem is well-posed except maybe for a countable set \mathcal{I} of frequencies k at which trapped modes exist.

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of

$$
\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)
$$

such that $u \in L^2(\Omega)$.

- There is a huge literature on trapped modes: Davies, Evans, Exner, Levitin, McIver, Nazarov, Vassiliev, ...
- Existence of trapped modes is proved in specific configurations (for instance symmetric with respect to the horizontal mid-axis) (Evans, Levitin and Vassiliev)
At particular frequencies k, it occurs that, for some u_{inc},

$$x \to -\infty \quad u_{sca} \to 0$$

We say that the obstacle \mathcal{O} produces no reflection. The wave is totally transmitted. And the obstacle is invisible for an observer located far at the left-hand side.
At particular frequencies k, it occurs that, for some u_{inc},

$$x \to -\infty \quad u_{sca} \to 0$$

We say that the obstacle \mathcal{O} produces no reflection. The wave is totally transmitted. And the obstacle is invisible for an observer located far at the left-hand side.
At particular frequencies k, it occurs that, for some u_{inc},

$$x \to -\infty \quad u_{sca} \to 0$$

We say that the obstacle \mathcal{O} produces no reflection. The wave is totally transmitted. And the obstacle is invisible for an observer located far at the left-hand side.

\mathcal{H}

OBJECTIVE

Find a way to compute directly the set \mathcal{H} of no-reflection frequencies by solving an eigenvalue problem.
AN ILLUSTRATION OF NO-REFLECTION PHENOMENON

Incident field $u_{inc} = e^{ikx}$

Total field u

Scattered field u_{sca}

Perturbation ρ
The main idea

The total field u always satisfies the homogeneous equations:

$$\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)$$

where k^2 plays the role of an eigenvalue.

Trapped modes

For $k \in \mathcal{T}$, the field of the trapped mode $u \in L^2(\Omega)$.

No-reflection

For $k \in \mathcal{K}$, the total field of the scattering problem $u \notin L^2(\Omega)$.

How to set an eigenvalue problem adapted to \mathcal{K}?
The main idea

A simple and important remark

For \(k \in \mathcal{K} \), the total field is \textbf{ingoing} at the left-hand side of \(\mathcal{O} \) and \textbf{outgoing} at the right-hand side of \(\mathcal{O} \).

The idea is to use a \textbf{complex scaling} (and numerically \textbf{PMLs}), with complex \textbf{conjugate} parameters at both sides of the obstacle, so that the transformed \(u \) will belong to \(L^2(\Omega) \).
The 1D case has been studied with a spectral point of view in:

Our approach allows us to extend some of their results to higher dimensions.

An additional complexity comes from the presence of evanescent modes.
Outline

1. A main tool: the complex scaling (PML)
2. Spectrum of trapped modes frequencies
3. Spectrum of no-reflection frequencies
4. Extensions and comments
Outline

1 A main tool: the complex scaling (PML)

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

4 Extensions and comments
A main tool: the complex scaling

(Perfectly Matched Layers)

Perfectly Matched Layers are classically used to solve scattering problems in waveguides (Bécache et al., Kalvin, Lu et al., etc...)

We start by splitting the waveguide into three parts:

\[\Omega_R = \Omega \cap \{|x| < R\}, \Omega_R^+ = \Omega \cap \{x > R\} \text{ and } \Omega_R^- = \Omega \cap \{x < -R\}, \]

and we denote by:

- \(u \) the total field in \(\Omega_R \),
- \(u^+ \) the transmitted wave in \(\Omega_R^+ \),
- \(u^- \) the reflected wave in \(\Omega_R^- \).
A main tool: the complex scaling
(Perfectly Matched Layers)

Reformulation of the scattering problem:

\[\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega_R) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega \cap \{|x| < R\}) \]

\[\Delta u^\pm + k^2 u^\pm = 0 \quad (\Omega_R^\pm) \quad \frac{\partial u^\pm}{\partial \nu} = 0 \quad (\partial \Omega \cap \{\pm x > R\}) \]

\[u = u^+ \text{ and } \frac{\partial u}{\partial x} = \frac{\partial u^+}{\partial x} \quad (x = R) \]

\[u - u_{inc} = u^- \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \frac{\partial u^-}{\partial x} \quad (x = -R) \]
A main tool: the complex scaling
(Perfectly Matched Layers)

Formulation with a scaling in Ω^\pm_R:

\[\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega_R) \]
\[\frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega \cap \{|x| < R\}) \]
\[\Delta_{\alpha} u^\pm_{\alpha} + k^2 u^\pm_{\alpha} = 0 \quad (\Omega^\pm_R) \]
\[\frac{\partial u^\pm_{\alpha}}{\partial \nu} = 0 \quad (\partial \Omega \cap \{\pm x > R\}) \]

\[u = u^+_\alpha \text{ and } \frac{\partial u}{\partial x} = \alpha \frac{\partial u^+_\alpha}{\partial x} \quad (x = R) \]

\[u - u_{inc} = u^-_{\alpha} \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \alpha \frac{\partial u^-_{\alpha}}{\partial x} \quad (x = -R) \]

With $u^\pm_{\alpha}(x, y) = u^\pm \left(\pm R + \frac{x \mp R}{\alpha}, y\right)$ for $(x, y) \in \Omega^\pm_R$.
A main tool: the complex scaling

(Perfectly Matched Layers)

The magic idea of PMLs: take $\alpha \in \mathbb{C}$ such that $u^\pm_{\alpha} \in L^2(\Omega^\pm_R)$.

If $\alpha = e^{-i\theta}$ with $0 < \theta < \pi/2$, propagating modes become evanescent:

$$u^+(x, y) = \sum_{n \leq N_P} a_n \cos(n\pi y) e^{i\sqrt{k^2 - n^2\pi^2}(x-R)} + \sum_{n > N_P} a_n \cos(n\pi y) e^{-\sqrt{n^2\pi^2-k^2}(x-R)}$$

$$u^\pm_{\alpha}(x, y) = \sum_{n \leq N_P} a_n \cos(n\pi y) e^{\frac{i\sqrt{k^2 - n^2\pi^2}}{\alpha}(x-R)} + \sum_{n > N_P} a_n \cos(n\pi y) e^{-\frac{\sqrt{n^2\pi^2-k^2}}{\alpha}(x-R)}$$

and the same for u^-_{α} with the same α.
A main tool: the complex scaling
* (Perfectly Matched Layers)

Final PML formulation:

\[
\Delta u + k^2 (1 + \rho) u = 0 \quad (\Omega_R) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega \cap \cap \{|x| < R\})
\]

\[
\Delta_\alpha u_\alpha^\pm + k^2 u_\alpha^\pm = 0 \quad (\Omega_R^\pm) \quad \frac{\partial u_\alpha^\pm}{\partial \nu} = 0 \quad (\partial \Omega \cap \{\pm x > R\})
\]

\[\begin{align*}
 u &= u_\alpha^+ \quad \text{and} \quad \frac{\partial u}{\partial x} = \alpha \frac{\partial u_\alpha^+}{\partial x} \quad (x = R) \\
 u - u_{\text{inc}} &= u_\alpha^- \quad \text{and} \quad \frac{\partial}{\partial x} (u - u_{\text{inc}}) = \alpha \frac{\partial u_\alpha^-}{\partial x} \quad (x = -R)
\end{align*}\]

where \(\Delta_\alpha = e^{-2i\theta} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \) and \(u_\alpha^\pm \in L^2(\Omega_R^\pm) \).
Outline

1. A main tool: the complex scaling (PML)

2. Spectrum of trapped modes frequencies

3. Spectrum of no-reflection frequencies

4. Extensions and comments
The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of

$$
\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)
$$

such that $u \in L^2(\Omega)$.

\[\Box\]
The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution \(u \neq 0 \) of

\[
\Delta u + k^2(1 + \rho)u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)
\]

such that \(u \in L^2(\Omega) \).

Let us consider the following unbounded operator of \(L^2(\Omega) \):

\[
D(A) = \{ u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \} \quad Au = -\frac{1}{1 + \rho} \Delta u
\]

\[
\Delta u + k^2(1 + \rho)u = 0 \iff Au = k^2 u
\]
The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution \(u \neq 0 \) of

\[
\Delta u + k^2 (1 + \rho) u = 0 \quad (\Omega) \quad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)
\]

such that \(u \in L^2(\Omega) \).

Let us consider the following unbounded operator of \(L^2(\Omega) \):

\[
D(A) = \{ u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \} \quad Au = - \frac{1}{1 + \rho} \Delta u
\]

The trapped modes \((k \in \mathcal{T})\) correspond to real eigenvalues \(k^2 \) of \(A \).
A is an unbounded operator with domain $D(A) \subset H$ (H Hilbert space)

Resolvent set and spectrum

\[\rho(A) = \{ \lambda \in \mathbb{C}; A - \lambda I \text{ is bijective from } D(A) \text{ to } H \} \text{ and } \sigma(A) = \mathbb{C} \setminus \rho(A) \]

The spectrum $\sigma(A)$ contains the eigenvalues but not only....

Essential spectrum

If $u_n \in D(A), \|u_n\| = 1$, $u_n \rightharpoondown 0$ and $\|Au_n - \lambda u_n\| \rightarrow 0$ (Weyl sequence), we say that $\lambda \in \sigma_{\text{ess}}(A)$.

The essential spectrum $\sigma_{\text{ess}}(A)$ is stable under compact perturbations.

Discrete spectrum

$\sigma_{\text{disc}}(A)$ is the set of isolated eigenvalues with finite multiplicity.

If A is self-adjoint, $\sigma(A) = \sigma_{\text{ess}}(A) \cup \sigma_{\text{disc}}(A) \subset \mathbb{R}$.
Trapped modes \((k \in \mathcal{T})\) correspond to real eigenvalues \(k^2\) of

\[
Au = -\frac{1}{1 + \rho} \Delta u \quad \text{with } D(A) = \{u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega\}
\]

For the scalar product of \(L^2(\Omega)\) with weight \(1 + \rho\):

\[
\text{Spectral features of } A
\]

\[
\sigma(A) = \sigma_{\text{ess}}(A) = \mathbb{R}^+ \text{ and } \sigma_{\text{disc}}(A) = \emptyset
\]
Trapped modes \((k \in \mathcal{T})\) correspond to real eigenvalues \(k^2\) of

\[
Au = -\frac{1}{1 + \rho} \Delta u \quad \text{with } D(A) = \{u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega\}
\]

For the scalar product of \(L^2(\Omega)\) with weight \(1 + \rho\):

Spectral features of \(A\)

- \(A\) is a positive self-adjoint operator.
- \(\sigma(A) = \sigma_{ess}(A) = \mathbb{R}^+\) and \(\sigma_{disc}(A) = \emptyset\)
Trapped modes \((k \in \mathcal{T})\) correspond to real eigenvalues \(k^2\) of

\[
Au = -\frac{1}{1 + \rho} \Delta u \quad \text{with } D(A) = \{u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega\}
\]

For the scalar product of \(L^2(\Omega)\) with weight \(1 + \rho\):

Spectral features of \(A\)
- \(A\) is a positive self-adjoint operator.
- \(\sigma(A) = \sigma_{ess}(A) = \mathbb{R}^+\) and \(\sigma_{disc}(A) = \emptyset\)
- Trapped modes are embedded eigenvalues of \(A\)!

\[\Im m \lambda \uparrow \quad - \rightarrow \Re e \lambda\]

Solution: the complex scaling (Aguilar, Balslev, Combes, Simon 70)
Let us consider now the following unbounded operator:

\[D(A_\alpha) = \{ u \in L^2(\Omega); A_\alpha u \in L^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \} \]

\[A_\alpha u = -\frac{1}{1+\rho(x,y)} \left(\alpha(x) \frac{\partial}{\partial x} \left(\alpha(x) \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} \right) \]

where \(\alpha(x) = e^{-i\theta} \), \(\alpha(x) = 1 \), \(\alpha(x) = e^{-i\theta} \)
Spectral features of A_α

- A_α is a **non self-adjoint** operator.
- $\sigma_{ess}(A_\alpha) = \bigcup_{n \geq 0} \{ n^2 \pi^2 + e^{-2i\theta} t^2 ; t \in \mathbb{R} \}$
- $\sigma(A_\alpha) = \sigma_{ess}(A_\alpha) \cup \sigma_{disc}(A_\alpha)$
- $\sigma(A_\alpha) \subset \{ z \in \mathbb{C} ; -2\theta < \text{arg}(z) \leq 0 \}$

(see Kalvin, Kim and Pasciak)

![Graph](https://via.placeholder.com/150)
Some elements of proof

Proof of the second item:

\[\sigma_{\text{ess}}(A_{\alpha}) = \sigma_{\text{ess}}(-\Delta_{\theta}) \]

\[= \bigcup_{n \geq 0} \sigma_{\text{ess}}(-\Delta^{(n)}_{\theta}) \]

\[= \bigcup_{n \geq 0} \left\{ n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R} \right\} \]

Essential spectrum of \(A_{\alpha} \):

\[\Delta_{\theta} = e^{-2i\theta} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]

\[\Delta^{(n)}_{\theta} = e^{-2i\theta} \frac{\partial^2}{\partial x^2} + n^2 \pi^2 \]
Some elements of proof

Proof of the third item: \(\sigma(A_\alpha) = \sigma_{ess}(A_\alpha) \cup \sigma_{disc}(A_\alpha) \)

The result follows from analytic Fredholm theorem because:

1. \(U = \mathbb{C} \setminus \sigma_{ess}(A_\alpha) \) is a connected set.
2. There is a point \(z \in U \) such that \(A_\alpha - z \) is invertible (coerciveness).

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential operators.)
Trapped modes correspond to **discrete** real eigenvalues of A_α!

Other eigenvalues correspond to **complex resonances**, with a field u exponentially growing at infinity.

Spectrum of A_α:

![Diagram](image-url)
Numerical Illustration

The numerical results have been obtained by a finite element discretization with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle of the waveguide:

We put PMLs in the magenta parts:
The numerical results have been obtained by a finite element discretization with **FreeFem++**.

Here the scatterer is a **non-penetrable rectangular obstacle** in the middle of the waveguide:

We put **PMLs** in the magenta parts:

In the next slides, we represent the **square-root of the spectrum**, which corresponds to \(k \) values.
Numerical illustration
Numerical illustration
There are two trapped modes:
1. A main tool: the complex scaling (PML)

2. Spectrum of trapped modes frequencies

3. Spectrum of no-reflection frequencies

4. Extensions and comments
A new complex spectrum linked to \mathcal{H} with ”conjugate” PMLs

A simple and important remark

For $k \in \mathcal{H}$, the total field is ingoing at the left-hand side of \mathcal{O} and outgoing at the right-hand side of \mathcal{O}.

The idea is to use a complex scaling (and numerically PMLs), with complex conjugate parameters at both sides of the obstacle, so that the transformed total field u will belong to $L^2(\Omega)$.
A NEW COMPLEX SPECTRUM LINKED TO \mathcal{H}
WITH "CONJUGATE" PMLs

Let us consider now the following unbounded operator:

$$D(A\tilde{\alpha}) = \{ u \in L^2(\Omega); A\tilde{\alpha}u \in L^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \}$$

$$A\tilde{\alpha}u = -\frac{1}{1 + \rho(x, y)} \left(\tilde{\alpha}(x) \frac{\partial}{\partial x} \left(\tilde{\alpha}(x) \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} \right)$$

\[\tilde{\alpha}(x) = e^{i\theta} \quad \tilde{\alpha}(x) = 1 \quad \tilde{\alpha}(x) = e^{-i\theta} \]
A new complex spectrum linked to \mathcal{H}
with "conjugate" PMLs

Let us consider now the following unbounded operator:

$$D(A_{\tilde{\alpha}}) = \{ u \in L^2(\Omega); A_{\tilde{\alpha}} u \in L^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \}$$

$$A_{\tilde{\alpha}} u = -\frac{1}{1 + \rho(x, y)} \left(\tilde{\alpha}(x) \frac{\partial}{\partial x} \left(\tilde{\alpha}(x) \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} \right)$$

Spectral features of $A_{\tilde{\alpha}}$

- $A_{\tilde{\alpha}}$ is a non self-adjoint operator.
- $\sigma_{ess}(A_{\tilde{\alpha}}) = \bigcup_{n \geq 0} \{ n^2 \pi^2 + e^{2i\theta} t^2; t \in \mathbb{R} \} \cup \{ n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R} \}$
- $\sigma_{disc}(A_{\tilde{\alpha}}) \subset \{ z \in \mathbb{C}; -2\theta < \arg(z) < 2\theta \}$
A NEW COMPLEX SPECTRUM LINKED TO \mathcal{H}
with "conjugate" PMLs

Typical expected spectrum of $A_{\tilde{\alpha}}$:

\[\sigma_{\text{ess}}(A_{\tilde{\alpha}}) = \bigcup_{n \geq 0} \{n^2 \pi^2 + e^{2i\theta} t^2; t \in \mathbb{R}\} \cup \{n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R}\} \]
\[\sigma(A_{\tilde{\alpha}}) \subset \{z \in \mathbb{C}; -2\theta < \text{arg}(z) < 2\theta\} \]
A new complex spectrum linked to \mathcal{K} with "conjugate" PMLs

Typical expected spectrum of $A_{\tilde{\alpha}}$:

Difficulty: $\mathbb{C} \setminus \sigma_{\text{ess}}(A_{\tilde{\alpha}})$ is not a connected set.

Conjecture

$$\sigma(A_{\tilde{\alpha}}) = \sigma_{\text{ess}}(A_{\tilde{\alpha}}) \cup \sigma_{\text{disc}}(A_{\tilde{\alpha}}) \text{ if } \rho \neq 0$$
Pathological cases

In the unperturbed case ($\rho = 0$):

All k^2 in the yellow zone are eigenvalues of $A_{\tilde{\alpha}}$!

Proof: Use the stretched plane wave as an eigenvector:

$$A_{\tilde{\alpha}} u = k^2 u$$

for $u(x, y) = \begin{cases}
 e^{ik(-R+(x+R)e^{-i\theta})} & \text{if } x < -R \\
 e^{ikx} & \text{if } -R < x < R \\
 e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x
\end{cases}$
Pathological cases

And the same result holds with horizontal cracks!

All k^2 in the yellow zone are eigenvalues of $A_{\tilde{\alpha}}$!

Proof: Use the stretched plane wave as an eigenvector:

$$A_{\tilde{\alpha}}u = k^2 u$$

for $u(x, y) = \begin{cases}
 e^{ik(-R+(x+R)e^{-i\theta})} & \text{if } x < -R \\
 e^{ikx} & \text{if } -R < x < R \\
 e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x
\end{cases}$
For real eigenvalues, the eigenmode is such that

- u is ingoing
- \mathcal{O} u is outgoing
For $k^2 \in \sigma_{disc}(A_{\tilde{\alpha}}) \cap \mathbb{R}$, the eigenmode is such that:

- u is ingoing
- u is outgoing

There are two cases:

- Either u on the left-hand side contains a propagating part and it is a case of no-reflection: $k \in \mathcal{H}$.
- Either u is evanescent on both sides and k is associated to a trapped mode: $k \in \mathcal{T}$.

Theorem

$$\sigma_{disc}(A_{\tilde{\alpha}}) \cap \mathbb{R} = \{ k^2 \in \mathbb{R}; k \in \mathcal{H} \cup \mathcal{T} \}$$
Remember that:

\[
A \tilde{\alpha} u = -\frac{1}{1 + \rho(x, y)} \left(\tilde{\alpha}(x) \frac{\partial}{\partial x} \left(\tilde{\alpha}(x) \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} \right)
\]

and that

\[
\tilde{\alpha}(-x) = \overline{\tilde{\alpha}(x)}
\]

Consequence

If the obstacle is symmetric in \(x\):

\[
\rho(-x, y) = \rho(x, y)
\]

\(A \tilde{\alpha}\) is \(\mathcal{PT}\)-symmetric and its spectrum is stable by complex conjugation:

\[
\sigma(A \tilde{\alpha}) = \overline{\sigma(A \tilde{\alpha})}
\]
The spectrum is symmetric w.r.t. the real axis (\mathcal{PT}-symmetry).
There are much more real eigenvalues than for trapped modes.
NUMERICAL ILLUSTRATION
FOR A RECTANGULAR SYMMETRIC CAVITY

Red: classical PMLs
Blue: conjugate PMLs
Numerical illustration for a rectangular symmetric cavity

This is a representation of the computed modes for the 10 first real eigenvalues and in the whole computational domain (including PMLs).
Let us focus on the eigenmodes such that $0 < k < \pi$:

First trapped mode:
$k = 1.2355 \cdots$

Second trapped mode:
$k = 2.3897 \cdots$

First no-reflection mode:
$k = 1.4513 \cdots$

Second no-reflection mode:
$k = 2.8896 \cdots$
To validate this result, we compute the amplitude of the reflected plane wave for $0 < k < \pi$:

First no-reflection mode:
$k = 1.4513 \cdots$

Second no-reflection mode:
$k = 2.8896 \cdots$

There is a **perfect agreement**!
No-reflection mode in the time-domain

Below we represent $\Re(e^{i\omega t})$ with u...

...a no-reflection mode:

![Image of no-reflection mode]

with the corresponding incident propagating mode:

![Image of incident propagating mode]

We observe no reflection but a phase shift in the transmitted wave.
NO-REFLECTION MODE IN THE TIME-DOMAIN

Below we represent $\Re(e^{i\omega t})$ with u...

...a no-reflection mode:

with the corresponding incident propagating mode:

We observe no reflection but a phase shift in the transmitted wave.
Numerical illustration
in a non \mathcal{PT}-symmetric case

Here the scatterer is a not symmetric in x, and neither in y:

We expect:
- No trapped modes
- No invariance of the spectrum by complex conjugation
The spectrum is no longer symmetric w.r.t. the real axis.

There are several eigenvalues near the real axis.
Numerical illustration in a non \mathcal{PT}-symmetric case

Again results can be validated by computing $R(k)$ for $0 < k < \pi$:

\[
\begin{align*}
 k &= 1.2803 + 0.0003i &
 k &= 2.3868 + 0.0004i &
 k &= 2.8650 + 0.0241i \\
\end{align*}
\]

Complex eigenvalues also contain useful information about almost no-reflection.
Outline

1. A main tool: the complex scaling (PML)
2. Spectrum of trapped modes frequencies
3. Spectrum of no-reflection frequencies
4. Extensions and comments
Multiport waveguides junction

OBJECTIVE

Find \((k, u)\) such that \(u\) is ingoing in some ports and outgoing in the others.

For an \(N\)-ports junction, there are \(2^{N-1}\) such problems and corresponding spectra.
This is a bar-bar example of such problem:

There are two axes of \mathcal{PT}-symmetry!
An interesting configuration is the junction of 2 different Dirichlet waveguides.

Consequences

- Now $\mathbb{C}\setminus \sigma_{ess}(A_\tilde{\alpha})$ is a connected set!
- Our "new" eigenvalues correspond in fact to classical complex resonances in non-classical sheets of the Riemannn surface......
Conclusion

There is still a lot of work to do!

- **Clarify the link** between our new spectrum and classical resonance frequencies.
- **Prove the existence of no-reflection frequencies** ($\mathcal{H} \neq \emptyset$), at least in \mathcal{PT}-symmetric cases.
- **Justify the numerics** (absence of spectral pollution).
- **Find similar spectral approaches** for other phenomena in waveguides (perfect invisibility, total reflection, modal conversion, etc...)

...

These results have been published in:
