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SPECTRAL THEORY AND WAVE PHENOMENA

The spectral theory is classically used to study resonance phenomena:

@ eigenfrequencies of a string, a @ complex resonances of “open’
closed acoustic cavity, etc... cavities (with leakage)
E(w)

Re ©

Im e

A new point of view: find similar spectral approaches to quantify the
efficiency of the transmission in a waveguide.

Waveguides play an important role in optical and acoustical devices.
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

The acoustic waveguide: Q =R x (0,1), k = w/c, e”™*t

0
8—5—0
y
. Au+k2u=0 ]1
x .
1 u
3, =0

e A finite number of propagating modes for k > nm:
uE (x, ) = cos(nmy)et G, = VKT OPLAL
(4/— correspond to right/left going modes)

e An infinity of evanescent modes for k < nm: K

Ut (x,y) = cos(nmy)eTm*  ~, =+/n272 — k2
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

An example with 3 propagating modes:
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

o (C Q ) incident wave
inf(1+p) >0 ’ _
supp(p) C O e RN transmitted wave

e The total field u = uj,c + usca satisfies the equations

Au+K(1+pu=0 (Q) %:0 (092)

e The incident wave is a superposition of propagating modes:

Np
Uinc = Z anur—i_
n=0
e The scattered field v, is outgoing:

YWAAS
Ww—f-./,, . x‘""V\A}‘\F
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SCATTERING PROBLEM AND TRAPPED MODES

By Fredholm analytic theory:

THEOREM
The scattering problem is well-posed except maybe for a countable set .7
of frequencies k at which trapped modes exist.
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SCATTERING PROBLEM AND TRAPPED MODES

THEOREM

The scattering problem is well-posed except maybe for a countable set .7
of frequencies k at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ K (1+pu=0 (Q) % =0 (09)
such that u € L%(Q).
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SCATTERING PROBLEM AND TRAPPED MODES

THEOREM

The scattering problem is well-posed except maybe for a countable set .7
of frequencies k at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ K (1+pu=0 (Q) gZ:O (092)

such that u € L%(Q).

@ There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, Mclver, Nazarov, Vassiliev, ...

e Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev)
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NO-REFLECTION

At particular frequencies k , it occurs that, for some uje,
X — —00 Usea — 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

<3 M/‘\ﬂw\/
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NO-REFLECTION

At particular frequencies k , it occurs that, for some uje,
X — —00 Usea — 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

OBJECTIVE

Find a way to compute directly the set .#" of no-reflection frequencies by
solving an eigenvalue problem.
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AN ILLUSTRATION OF NO-REFLECTION PHENOMENON

DAOB

Incident field uj,e = ek

0A12

Total field u

Scattered field wvse,

[212
“F%
EODO

Perturbation p

Eo 00

0401

6/34



THE MAIN IDEA

The total field v always satisfies the homogeneous equations:
0
Bu+K(L+pu=0 (2) 5 =0 (99
14

where k? plays the role of an eigenvalue.

TRAPPED MODES

For k € 7, the field of the trapped mode u € L?(Q).

NO-REFLECTION

For k € ', the total field of the scattering problem u ¢ L2(Q).

How to set an eigenvalue problem adapted to .Z" 7 7/ 34



THE MAIN IDEA

A SIMPLE AND IMPORTANT REMARK

For k € 2, the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed u will belong to L2(9Q).
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THE 1D CASE

The 1D case has been studied with a spectral point of view in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,
Perfect transmission scattering as a P -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows us to extend some of their results to higher
dimensions.

An additional complexity comes from the presence of evanescent modes.
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OUTLINE

© A MAIN TOOL: THE COMPLEX SCALING (PML)

9 SPECTRUM OF TRAPPED MODES FREQUENCIES

© SPECTRUM OF NO-REFLECTION FREQUENCIES

@ EXTENSIONS AND COMMENTS
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A MAIN TOOL: THE COMPLEX SCALING

(PERFECTLY MATCHED LAYERS)

Perfectly Matched Layers are classically used to solve scattering problems
in waveguides (Bécache et al., Kalvin, Lu et al., etc...)

| |
| |
— +
r @ 9
| |

-R +R

We start by splitting the waveguide into three parts:
Qr=0Nn{x| <R}, Qp =QN{x>R}and Qz = QN {x < —R},
and we denote by:

e u the total field in Qg,

o uT the transmitted wave in Qf,

@ u~ the reflected wave in Q.
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A MAIN TOOL: THE COMPLEX SCALING

(PERFECTLY MATCHED LAYERS)

ou

Au+ K (1+pu=0 (Qr) 5, =0 (02N {|x| < R})
+

AvF + KPuF =0 (QF) 88‘;—0 (09N {£x > R})

du  Ou™
- = =

u=u" and %~ B (x=R) ;
_ u-

U — Uppe = U~ and a(u—umc)—a (x=—R)
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A MAIN TOOL: THE COMPLEX SCALING

(PERFECTLY MATCHED LAYERS)

ou

Au+K*(1+pu=0 (QR) 5, =0 (920 {lx < R})

=+
Ajuf + Kot =0 (QF) ag“' =0 (09N {£x> R})

v
+
u=ul and gz = Q(")u; (x=R) ,
_ u, o
U — Ujnc = u, and a(u — Ujpe) = @ B (x=—R)
XFR

. + + +
with v (x,y) =u <:|:R + ,y) for (x,y) € Q.

0’
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A MAIN TOOL: THE COMPLEX SCALING

(PERFECTLY MATCHED LAYERS)

e

| |
| |
@
| |

u_ ! ! uy
1 1

e —

R R
The magic idea of PMLs: take o € C such that uf € L?(QF).
i

If o« =e™"" with 0 < 0 < 7/2, propagating modes become evanescent

ut(x,y) = Z"SNP an cos(nﬂy)e"m(x—ﬁ’) AN AN AN AA

i\/k2:n27r2 (x—R)

U(—;(X,y) = Z"SNP a,,cos(mry)e P &/\AN
22 x2
(x—R)

+ D psnp @ncos(nmy)e e

and the same for u_ with the same a.
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A MAIN TOOL: THE COMPLEX SCALING

(PERFECTLY MATCHED LAYERS)

PML | €O PML

R +R

FinaAL PML FORMULATION:

ou

Au+ K1 +pu=0 (QR) 5, =0 (02nn{x| <R}
=5
Ajuf + Kot =0 (QF) ag‘* =0 (09N {£x> R})
14
du out
— - e _
u=u. and Ee aaax (x=R) ,
_ duy; -
U — Ujnc = u, and a(u — Ujpc) = ag (x=—R)
72,'(1872 0

where A, = e + —— and u € L2(QF).

Ox2  0y?
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@ A MAIN TOOL: THE COMPLEX SCALING (PML)
© SPECTRUM OF TRAPPED MODES FREQUENCIES
@ SPECTRUM OF NO-REFLECTION FREQUENCIES

@ EXTENSIONS AND COMMENTS
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u = 0 of

Au+ K1 +pu=0 (Q) @—0 (092)

o
such that u € L%(Q).
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ K (1+pu=0 (Q) 9u (09)

%
such that u € L%(Q).

Let us consider the following unbounded operator of L?():
1
D(A)={ue H2(Q);gz—00n oQ} Au:_mAu
Au+ k*(1+4 p)u=0 <= Au = Kk?u
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

)
Au+K(1+pu=0 (Q) ale:O (99)

such that u € L%(9Q).

Let us consider the following unbounded operator of L?():

ou 1

D(A) ={uc H*(Q); =—— =00n 0Q}  Au=

A
ov Y

14

The trapped modes (k € .7) correspond to real eigenvalues k2 of A.
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SURVIVAL GUIDE OF SPECTRAL THEORY

A is an unbounded operator with domain D(A) C H (H Hilbert space)

RESOLVENT SET AND SPECTRUM
p(A) = {\ € C; A— Al is bijective from D(A) to H} and o(A) = C\p(A)

The spectrum o(A) contains the eigenvalues but not only....

ESSENTIAL SPECTRUM

If u, € D(A), ||ual| =1, up — 0 and ||Au, — Aun|| — 0 (Weyl sequence),
we say that A € oess(A).

The essential spectrum oess(A) is stable under compact perturbations.

DISCRETE SPECTRUM

odisc(A) is the set of isolated eigenvalues with finite multiplicity.

If Ais self-adjoint, 0(A) = 0ess(A) U 04isc(A) C R.
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .7) correspond to real eigenvalues k? of
1

Au = —mAu with D(A) = {u € H*(Q); glyj =0 on 00}

For the scalar product of L2(Q) with weight 1 + p:
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .7) correspond to real eigenvalues k? of
1
Au = —mAu with D(A) = {u € H*(Q); % =0 on 00}

For the scalar product of L?(Q) with weight 1 + p:

SPECTRAL FEATURES OF A

@ A is a positive self-adjoint operator.
@ 0(A) = 0ess(A) = RT and oyisc(A) = 0

- Red
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .77) correspond to real eigenvalues k? of
1
Au = —mAu with D(A) = {u € H*(Q); gs =0 on 00N}

For the scalar product of L2() with weight 1 + p:

SPECTRAL FEATURES OF A

@ A is a positive self-adjoint operator.
0 0(A) = 0ess(A) = R and o4isc(A) = 0

o Trapped modes are embedded eigenvalues of A !

ImA
3 - Rel

Solution: the complex scaling (Aguilar, Balslev, Combes, Simon 70)
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COMPLEX SCALING FOR TRAPPED MODES

Let us consider now the following unbounded operator:

D(A.) = {uel*(Q);A.ue Q) % =0 on 90}
1 0 ou 0%u
e = w00 (05 + %)
e
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COMPLEX SCALING FOR TRAPPED MODES

SPECTRAL FEATURES OF A,

@ A, is a non self-adjoint operator.
Oess(An) = Unzo{nzﬁ2 +e %02t ¢ R}
0(Aa) = Tess(Aa) U 0gisc(An)

o(A.) C {z € C;-20 < arg(z) < 0}

(see Kalvin, Kim and Pasciak )
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SOME ELEMENTS OF PROOF

Proof of the second item:

UESS(AG) = Uess(*Af)) AV @ + 87)/2
= U O-ess(—Agn)) Agn) _ e—2i9i22 + n2r2
n>0 ox
= U {nPm? + e 212t € R}
n>0

Essential spectrum of A:
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SOME ELEMENTS OF PROOF

Proof of the third item: 0(A,) = 0ess(An) Y 0gisc(An)
The result follows from analytic Fredholm theorem because:
Q@ U =C\oess(A,) is a connected set.

@ There is a point z € U such that A, — z is invertible (coerciveness).

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential
operators.)
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TRAPPED MODES AND COMPLEX RESONANCES

DISCRETE SPECTRUM OF A,
@ Trapped modes correspond to discrete real eigenvalues of A, !

@ Other eigenvalues correspond to complex resonances, with a field u
exponentially growing at infinity.

Spectrum of A,:

etrapped mode
ecomplex resonance
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NUMERICAL ILLUSTRATION

The numerical results have been obtained by a finite element
discretization with FreeFem-++-.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We put PMLs in the magenta parts:

B B
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NUMERICAL ILLUSTRATION

The numerical results have been obtained by a finite element
discretization with FreeFem-++-.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We put PMLs in the magenta parts:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.
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NUMERICAL ILLUSTRATION

-2+

-4}

-6

-10

14

12
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NUMERICAL ILLUSTRATION

2 T T T T T T
0
oy *5{ 2"
ke B
* K Kk o By
* ¥ .,: S yﬁ‘**: ”*tk
-2 * * % * % e
* 5 % * ¥
* x * **
* *
* * *
-4t * *
* *
* *
* *
-6+ *
6 *
-8H S 0=n/8
* 0=we
* O=n/4
-10 T 1 L
0 2 4 6
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NUMERICAL ILLUSTRATION

There are two trapped modes:

2 T T T T

o

— 4
* * %

-2+ * *

-6+

* * * *
* *
s *
-8l * % _
* ** *
* O=n/4 *
-10 I I I I * L
0 2 4 6 8 10 12
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@ A MAIN TOOL: THE COMPLEX SCALING (PML)
© SPECTRUM OF TRAPPED MODES FREQUENCIES
@ SPECTRUM OF NO-REFLECTION FREQUENCIES

@ EXTENSIONS AND COMMENTS
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

A SIMPLE AND IMPORTANT REMARK

For k € 2, the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed total field u will belong to L2(Q).
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Let us consider now the following unbounded operator:
D(Az) = {u€l?(Q);Asuc L*(Q); g— =0 on 00}
1 L, 0 0u
Asu = _m ((Y(X)ax< ( ) >+8y2>
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A NEW COMPLEX SPECTRUM LINKED TO ¢
WITH ” CONJUGATE” PMLSs
Let us consider now the following unbounded operator:

D(Az) = {u€l?(Q);Asu e L%(Q); 2% _0on 0}
v

oo =~ (302 (a005) + 54)

SPECTRAL FEATURES OF Az

@ A; is a non self-adjoint operator.
@ 0ess(Az) = Unzo{n2W2 1 2042 ¢ R} U {nzﬂz + e 2042 ¢ ¢ R}
@ ogisc(As) C {z € C; -20 < arg(z) < 20}
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Typical expected spectrum of A;:

0 0ess(As) = Unzo{”2772 +e20¢2: t € R} U {n2n2 + e 242, t € R}
e 0(As) C{z € C;-20 < arg(z) < 20}
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Typical expected spectrum of A;:

Difficulty: C\oess(Az) is not a connected set.

U(Ad) = O'ess(A&) O] G'disc(Af\,) if 1% 7& 0

22 /34



PATHOLOGICAL CASES

In the unperturbed case (p = 0):

All k% in the yellow zone are eigenvalues of Aj;!

Proof: Use the strechted plane wave as an eigenvector:

A(],U = k2u
eik(fRJr(erR)e*’p) if x < —R
for u(x,y) = elkx if —R<x<R
eik(R+(x—R)ei9) if R < x
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PATHOLOGICAL CASES

And the same result holds with horizontal cracks !

All k? in the yellow zone are eigenvalues of Az!

Proof: Use the strechted plane wave as an eigenvector:

A;,,,U = k2U
eik(—R—i—(X—O—R)e_m) if x < —R
for u(x,y) = ek . if —-R<x<R
eik(R+(x—R)e'9) if R < x
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LINK BETWEEN THE DISCRETE SPECTRUM AND ¢~

For real eigenvalues, the eigenmode is such that

u is ingoing . u is outgoing

24 /34



LINK BETWEEN THE DISCRETE SPECTRUM AND %~

For k? € 04isc(As) NR, the eigenmode is such that:

.+ — .+ S~
VWA ©® W

u is ingoing u is outgoing

There are two cases:
o Either u on the left-hand side contains a propagating part and it is a
case of no-reflection: k € 7.
o Either u is evanescent on both sides and k is associated to a
trapped mode: k € 7.

THEOREM

odisc(Az)R = {k?* € Rk € X UT}
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PT-SYMMETRY (SPACE-TIME REFLECTION SYMMETRY)

Remember that:
1 - 0 (., Ou d2u
o=y (1903 (7005 + 57

x)

and that

a(—x) =a

—

CONSEQUENCE

If the obstacle is symmetric in x:

p(=x,y) = p(x,y)

Az is PT-symmetric and its spectrum is stable by complex conjugation:

O'(A(),) = O’(A&)
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NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

10

Square root of the spectrum

%‘6*** T
w Fx* *
8r ***% ** 4
* L ¥ * *
2y ¥ ¥ *
6F * Fx * ¥
* 0 * * *
M * * «
4l * * * * *
* y* * * ¥
* % o & &
** * * ¥ % bl
2 * * * i 4
« ¥ o kg
oi*lm P . Mf *— *g* s ra
¥ | T 1 -
* * %
* * * %
-2r * * * % g
* *y *, %, * E
* * * *,
*
-4+ ** * * ** 4:%,
* o, * * * X
* | % *
* ok * *
-6 * 0 * *
* % * *
* * * *
* % * *
L * e * * i
-8 **%* *
= *
* g, T4 ****
-10 T L L L L kT oy L
0 2 4 6 8 10 12 14

@ The spectrum is symmetric w.r.t. the real axis (P7T-symmetry) .
@ There are much more real eigenvalues than for trapped modes.
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NUMERICAL ILLUSTRATION
FOR A RECTANGULAR SYMMETRIC CAVITY

5

4+

Red: classical PMLs
Blue: conjugate PMLs

26 /34



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

L et ) ]
) wd ) B D)
L cmm_ W - W

) me{] S =... (=1
- el R

This is a representation of the computed modes for the 10 first real
eigenvalues and in the whole computational domain (including PMLs).

26 /34



VALIDATION

Let us focus on the eigenmodes such that 0 < k < m:

_dlbk__N

First trapped mode: Second trapped mode:
k =1.2355--. k =2.3897---
L = P e
-_
First no-reflection mode: Second no-reflection mode:
k =1.4513--. k =2.8896---
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VALIDATION

To validate this result, we compute the amplitude of the reflected plane

wave for 0 < k < 7
/\IR(kn/\
02 L L ::'

15 2

l =mm | e | |
First no-reflection mode: Second no-reflection mode:
k =1.4513... k =2.8896---

There is a perfect agreement!
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NO-REFLECTION MODE IN THE TIME-DOMAIN

—iwty with w...

Below we represent Re(u(x,y)e

...a no-reflection mode:

2

with the corresponding incident propagating mode:

We observe no reflection but a phase shift in the transmitted wave.
28 /34



NO-REFLECTION MODE IN THE TIME-DOMAIN

—iwty with w...

Below we represent Re(u(x,y)e

...a no-reflection mode:

KD pemmmn (D)

with the corresponding incident propagating mode:

Lo m)

We observe no reflection but a phase shift in the transmitted wave.
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NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Here the scatterer is a not symmetric in x, and neither in y:

We expect:
@ No trapped modes

@ No invariance of the spectrum by complex conjugation

29 /34



NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Square root of the spectrum

10

@ The spectrum is no longer symmetric w.r.t. the real axis.
@ There are several eigenvalues near the real axis.
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NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Again results can be validated by computing R(k) for 0 < k < 7:

o [R(k)I

bt
i
b
b
b
N q
25

(] 05 1 15 2 3

k = 1.2803 + 0.0003/ k = 2.3868 + 0.0004/ k = 2.8650 + 0.0241/

Complex eigenvalues also contain useful information about almost
no-reflection.
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@ A MAIN TOOL: THE COMPLEX SCALING (PML)
© SPECTRUM OF TRAPPED MODES FREQUENCIES
@ SPECTRUM OF NO-REFLECTION FREQUENCIES

@ EXTENSIONS AND COMMENTS
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MULTIPORT WAVEGUIDES JUNCTION

OBJECTIVE

Find (k, u) such that v is ingoing in some ports
and outgoing in the others.

For an N-ports junction, there are 2V=1 such problems and
corresponding spectra.
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MULTIPORT WAVEGUIDES JUNCTION

This is a bar-bar example of such problem:

There are two axes of PT-symmetry!
31/34



MULTIPORT WAVEGUIDES JUNCTION

I-I-*-I-I
:
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JUNCTION OF DIRICHLET WAVEGUIDES

An interesting configuration is the junction of 2 different Dirichlet
waveguides.

hl

I - I

CONSEQUENCES

@ Now C\oess(As) is a connected set!

@ Our "new" eigenvalues correspond in fact to classical complex
resonances in non-classical sheets of the Riemannn surface......
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CONCLUSION
There is still a lot of work to do !

o Clarify the link between our new spectrum and classical resonance
frequencies.

@ Prove the existence of no-reflection frequencies (£ # (), at least in
PT-symmetric cases.

e Justify the numerics (absence of spectral pollution).

e Find similar spectral approaches for other phenomena in waveguides
(perfect invisibility, total reflection, modal conversion, etc...)

These results have been published in:

Trapped modes and reflectionless modes as eigenfunctions of the same
spectral problem, Anne-Sophie Bonnet-BenDhia, Lucas Chesnel and
Vincent Pagneux, Proceedings of the Royal Society A, 2018.
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