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Follows from the Huygens Principle, i.e.

supp ([cos(t[D])]) € {(x.y) + Ix =y = [¢l}-
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» Conclusion Sharp time decay rates depend on low frequencies.
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e Sharp estimates, excepted in odd dimensions for the waves.
e One can add an obstacle.
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We only consider Schrédinger.
write
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where, by Theorem 1, ) '
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Analogous for n even.
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Three tools
» Positive commutators techniques
> Rescaled pseudo-differential calculus
> Heat flow estimates to handle the uncertainty region

Starting point:

1/P -1
(P—Axmrlzx(i—1¢m)

= reduces the problem to study the family (P/A)x«1 near energy/frequency 1.
IfP=—A

A n 1
> :S)\AS;I, ob Syu(x) =A2u(A2x)
reduces the resolvent analysis at energy 1, modulo a rescaling. One can then use

V+V-
=0, A = —28, A= VEVX
2i

to get a positive commutator estimate
P(=D)i[-A, Alp(—A) > c¢?(~A)

with ¢ > 0 and ¢ € C5°(R), ¢ =1 near 1.
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Rem. This also gives elliptic low frequency resolvent estimates
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Some insights on the proof of Theorem 1

We wish to apply the positive commutator method to

P :
—=SPSTL P= (A" 2y) 0,0k + A" 2bj(A"2y)d;

The operator Py has singular coefficients at 0. In fact, if |y| > 1,
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(similar estimates for Af%bj()\f%y))
Proposition 1 If { € C°°(R") vanishes near 0,

COE)(P/A+1) 7" ~ Syaa(x, D)Sy !

for some bounded family (by)x«1 of S72.
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Some insights on the proof of Theorem 1
Assume for simplicity that |g(x)| = 1. If x € C§°(R" \ 0) eqals 1 near infinity, we set

x-D+D- x

av = (- obo (22

) @=x0d

Then, by Proposition 1, there is a bounded family B(\) of bounded operators s.t.
i[(P/3),Ax] = 2(P/2) + (A1) TP B(A)(P/A+1)
Proposition 2 As A — 0 and supp(¢) — {1},
Hw(P/A)Q%XrPH 0.

By Proposition 2, for A < 1 and ¢ supported close enough to 1,

3 1

P(PINI[(P/X), Ale(P/A) = S (P/N) = C|fe(P/A)(AEx ||
3, 1
> 2% (P/X) — >
Selecting ¢ such that ¢ = ¢ and ¢ =1 near 1,
3 1
S(P/NI(P/N.ASPIN) 2 (PN (502(P/N) = 5)o(P/A) = 6(P/)

The proof of Proposition 2 uses the next lemma lemma, based on heat flow estimates.
Proposition 3 There exists § > 0 such that for all ¢ € C°(R)

HSO(P/A) - sa(_A/A)HL2*>L2 S,(p )‘5



