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Introduction
We consider three models of dispersive equations

I Schrödinger (
i∂t + ∆

)
u = 0, u(t) = e it∆u(0)

I Klein-Gordon(
∂2
t −∆ + 1

)
v = 0, v(t) = cos(t〈D〉)v(0) +

sin(t〈D〉)
〈D〉

∂tv(0)

I Waves (
∂2
t −∆

)
w = 0, w(t) = cos(t|D|)w(0) +

sin(t|D|)
|D|

∂tw(0)

All of them have globally conserved quantities (∼ energy)
I Schrödinger:

||u(t)||L2 = ||u(0)||L2 ,

I Klein-Gordon:

||∂tv(t)||2
L2 + ||〈D〉v(t)||2

L2 = ||∂tv(0)||2
L2 + ||〈D〉v(0)||2

L2

I Waves:

||∂tw(t)||2
L2 +

∣∣∣∣|D|w(t)
∣∣∣∣2
L2 = ||∂tw(0)||2

L2 +
∣∣∣∣|D|w(0)

∣∣∣∣2
L2
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Introduction

By localizing those energies in a ball BR = {|x | ≤ R} and selecting sufficiently
decaying data (ex. C∞0 (BR)), one has some time decay

I Schrödinger:

||u(t)||L2(BR ) .R 〈t〉−
n
2 ||u0||L2 ,

I Klein-Gordon:(
||∂tv(t)||2

L2(BR )
+ ||〈D〉v(t)||2

L2(BR )

) 1
2 .R 〈t〉−

n
2
(
||v(0)||H1 + ||∂tv(0)||L2

)
For Schrödinger, this is a straightforward consequence of the fundamental solution

[
e it∆

]
(x , y) =

1

(4iπt)
n
2

exp

(
i
|x − y |2

4t

)
.

Heuristically analogue for Klein-Gordon since, at low frequencies (ξ → 0)

e it〈ξ〉 = e it
√
|ξ|2+1 ≈ e ite i

t
2
|ξ|2

i.e. Klein-Gordon behaves like Schrödinger at low frequencies, modulo a phase.

These time decay rates are sharp.
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Introduction

For the wave equation, one has the following general estimates

∣∣∣∣∣∣∣∣1BR

sin(t|D|)
|D|

1BR

∣∣∣∣∣∣∣∣
L2→L2

.R 〈t〉1−n

and ∣∣∣∣1BR
cos(t|D|)1BR

∣∣∣∣
L2→L2 .R 〈t〉−n

Sharp in even dimensions. In odd dimensions,

1BR

sin(t|D|)
|D|

1BR
= 1BR

cos(t|D|)1BR
≡ 0 |t| > TR .

Follows from the Huygens Principle, i.e.

supp
([

cos(t|D|)
])
⊂
{

(x , y) : |x − y | = |t|
}
.
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Question
What can one say if the Euclidean Laplacian −∆ is replaced by the
Laplace-Beltrami operator for an asymptotically Euclidean metric,

i.e. by

P = −|g(x)|−1∂j

(
|g(x)|g jk (x)∂k

)
,

where
(
g jk (x)

)
is a positive definite matrix for each x ,

|g(x)| := det
(
g jk (x)

)− 1
2

and, for some ρ > 0 ∣∣∂α(g jk (x)− δjk
)∣∣ ≤ C〈x〉−ρ−|α|

⇔ long range perturbation of the Euclidean metric.

P is self-adjoint wrt to the measure |g(x)|dx ⇒ Spectral Theorem

f (P) =

∫
σ(P)

f (λ)dEλ

where(Eλ)λ is the spectral resolution of P. In particular

e−itP =

∫
σ(P)

e−itλdEλ.

Decay in t of e−itP ←→ Smoothness in λ of the spectral measure dEλ.
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)− 1
2

and, for some ρ > 0 ∣∣∂α(g jk (x)− δjk
)∣∣ ≤ C〈x〉−ρ−|α|

⇔ long range perturbation of the Euclidean metric.

P is self-adjoint wrt to the measure |g(x)|dx ⇒ Spectral Theorem

f (P) =

∫
σ(P)

f (λ)dEλ

where(Eλ)λ is the spectral resolution of P. In particular

e−itP =

∫
σ(P)

e−itλdEλ.

Decay in t of e−itP ←→ Smoothness in λ of the spectral measure dEλ.
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From energy decay to resolvent estimates

I σ(P) = [0,+∞) and P has no embedded eigenvalues.

I Stone’s formula

dEλ =
1

2iπ

(
(P − λ− i0)−1 − (P − λ+ i0)−1

)
dλ

où (P − λ∓ i0)−1 = limε→0+ (P − λ∓ iε)−1.

I Jensen-Mourre-Perry Theorem (1984). If ν > k + 1
2
, then

λ 7→ 〈x〉−ν(P − λ∓ i0)−1〈x〉−ν

is C k on (0,+∞) with values in L(L2) (bounded op. on L2).

I Left problem: behavior of

dk

dλk
〈x〉−ν(P − λ∓ i0)−1〈x〉−ν = k!〈x〉−ν(P − λ∓ i0)−1−k 〈x〉−ν

at the thresholds

λ→ +∞ (high frequencies), λ→ 0 (low frequencies).

Mnay results at high frequencies. Much less at low frequencies.
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Known results for high frequencies

I Resolvent estimates (regime λ→ +∞)

I at worst O(eCλ
1/2

) (Burq, Cardoso-Vodev)
I at best O(λ−1/2) if no trapped geodesics. In fact∣∣∣∣∣∣〈x〉−k+ 1

2
−(P − λ∓ i0)−k〈x〉−k+ 1

2
−
∣∣∣∣∣∣

L2→L2
. λ
−k/2

(Robert-Tamura, Wang, Gérard-Martinez,...)
I Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski

O(λ−1/2 log λ), Christianson and Christianson-Wunsch O(λσ)

I Consequences on evolution equations If

ψ ∈ C∞0 (R), ψ ≡ 1 near 0 (low frequency cutoff)

and σ = 1 or 1
2

, m = 0 or 1 and if one has polynomial resolvent bounds, then∣∣∣∣〈x〉−k−1e it(P+m)σ (1− ψ(P))u0

∣∣∣∣
L2 . 〈t〉−k

∣∣∣∣〈x〉k+1u0

∣∣∣∣
Hs

where s ∈ R depends on k, σ and the decay (or growth) rate of the resolvent.

I Interpretation Up to a loss (or gain) of smoothness, the time decay is as fast as
we wish, for any equation, provided one cuts the low frequencies off.

I Conclusion Sharp time decay rates depend on low frequencies.
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Results including low frequencies

I Example in dimension 3, the kernel of (−∆− z)−1 is

Kz = c
e iz

1/2|x−y|

|x − y |
= O(1), ∂zKz = O(|z|−1/2), ∂2

zKz = O(|z|−3/2)

Essentially, one can perform one and a half IBP in the spectral representation of
e it∆ ⇒ decay rate = t−3/2.

I Intuition Limited time decay rates are related to singularities of the resolvent at
z = 0

I Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips,
Vainberg,... → Exponential decay for the waves in odd dim.

I Very short range perturbations Jensen-Kato, Murata, Rauch,
Journé-Soffer-Sogge, Wang → Sharp estimates for Schrödinger

I Long range perturbations
I Schlag-Soffer-Staubach (2010): exact conical models ( → pb 1D)
I Bony-Häfner (2012): ε sharp estimates
I Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics

(polyhomogeneous expansion of the metric)
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I Bony-Häfner (2012): ε sharp estimates
I Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics

(polyhomogeneous expansion of the metric)



Results including low frequencies

I Example in dimension 3, the kernel of (−∆− z)−1 is

Kz = c
e iz

1/2|x−y|

|x − y |
= O(1), ∂zKz = O(|z|−1/2), ∂2

zKz = O(|z|−3/2)

Essentially, one can perform one and a half IBP in the spectral representation of
e it∆ ⇒ decay rate = t−3/2.

I Intuition Limited time decay rates are related to singularities of the resolvent at
z = 0

I Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips,
Vainberg,... → Exponential decay for the waves in odd dim.

I Very short range perturbations Jensen-Kato, Murata, Rauch,
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I Bony-Häfner (2012): ε sharp estimates

I Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics
(polyhomogeneous expansion of the metric)



Results including low frequencies

I Example in dimension 3, the kernel of (−∆− z)−1 is

Kz = c
e iz

1/2|x−y|

|x − y |
= O(1), ∂zKz = O(|z|−1/2), ∂2

zKz = O(|z|−3/2)

Essentially, one can perform one and a half IBP in the spectral representation of
e it∆ ⇒ decay rate = t−3/2.

I Intuition Limited time decay rates are related to singularities of the resolvent at
z = 0

I Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips,
Vainberg,... → Exponential decay for the waves in odd dim.

I Very short range perturbations Jensen-Kato, Murata, Rauch,
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I Bony-Häfner (2012): ε sharp estimates
I Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics

(polyhomogeneous expansion of the metric)



Our results on the resolvent

Theorem 1 (B., Burq)

Let n ≥ 2, k ∈ N and ν > k. Then

I The map
λ 7→ 〈x〉−νE ′λ〈x〉

−ν ∈ L(L2)

is C k on (0, 1] and if moreover ν > n
2

,∣∣∣∣∣∣∣∣ d j

dλj
〈x〉−νE ′λ〈x〉

−ν
∣∣∣∣∣∣∣∣
L2→L2

≤ Cλ
n
2
−1−j .

I For the resolvent, one has∣∣∣∣∣∣〈x〉−ν(P − λ∓ i0
)−k 〈x〉−ν

∣∣∣∣∣∣
L2→L2

≤ Cλmin{0, n
2
−k},

unless n is even and k = n
2

in which case∣∣∣∣∣∣〈x〉−ν(P − λ∓ i0
)− n

2 〈x〉−ν
∣∣∣∣∣∣
L2→L2

≤ C | log λ|.
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Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq)

Let n ≥ 2 and F ∈ C∞0 (R)

I Schrödinger if ν > [ n
2

] + 2,∣∣∣∣∣∣〈x〉−νF (P)e itP〈x〉−ν
∣∣∣∣∣∣
L2→L2

≤ C〈t〉−
n
2 .

I Klein-Gordon if ν > [ n
2

] + 2,∣∣∣∣∣∣〈x〉−νF (P)e it
√
P+1〈x〉−ν

∣∣∣∣∣∣
L2→L2

≤ C〈t〉−
n
2 .

I Waves if ν > n + 1∣∣∣∣∣
∣∣∣∣∣〈x〉−νF (P)

sin(t
√
P)

√
P

〈x〉−ν
∣∣∣∣∣
∣∣∣∣∣
L2→L2

≤ C〈t〉1−n

and ∣∣∣∣∣∣〈x〉−νF (P)e it
√

P〈x〉−ν
∣∣∣∣∣∣
L2→L2

≤ C〈t〉−n.
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Solution to the initial problem

Corollary 3 (B., Burq)

If n ≥ 2 and the geodesic flow is non-trapping

I Schrödinger if ν > [ n
2

] + 2,∣∣∣∣∣∣〈x〉−νe itP〈x〉−ν ∣∣∣∣∣∣
L2→H

n
2
≤ C |t|−

n
2 .
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≤ C〈t〉−n.

• Sharp estimates, excepted in odd dimensions for the waves.
• One can add an obstacle.
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Proof of Theorem 2

We only consider Schrödinger.
write

F (P)e itP =

∫ ∞
0

F (λ)e itλE ′λdλ

where, by Theorem 1,

∂jλE
′
λ = O(λ

n
2
−1−j ).

In particular, one gets 0 at λ = 0 as long as n
2
− 1− j > 0.

Assume e.g that n is odd. By IBP,

t
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2 F (P)e itP =

∫ ∞
0

e itλ(i∂λ)
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e itλ(i∂λ)
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F (λ)E ′P(λ)
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Analogous for n even.
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Some insights on the proof of Theorem 1

Three tools

I Positive commutators techniques

I Rescaled pseudo-differential calculus

I Heat flow estimates to handle the uncertainty region

Starting point:

(P − λ∓ i0)−1 =
1

λ

(
P

λ
− 1∓ i0

)−1

⇒ reduces the problem to study the family (P/λ)λ�1 near energy/frequency 1.
If P = −∆

∆

λ
= Sλ∆S−1

λ , où Sλu(x) = λ
n
2 u
(
λ

1
2 x
)

reduces the resolvent analysis at energy 1, modulo a rescaling. One can then use

i [−∆,A] = −2∆, A =
x · ∇+∇ · x

2i

to get a positive commutator estimate

φ(−∆)i [−∆,A]φ(−∆) ≥ cφ2(−∆)

with c > 0 and φ ∈ C∞0 (R), φ ≡ 1 near 1.
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Heat flow estimates and applications

From the Nash inequality,

||u||1+ 2
n

L2 . ||u||
2
n

L1 ||∇u||L2 . ||u||
2
n

L1 ||
√
Pu||L2

it is well known that one gets

||e−tP ||Lp→L2 . t
− n

2

(
1
p
− 1

2

)
.

Lemma. If s ∈ [0, n
4

], σ > 2s and κ > s,∣∣∣∣(P/λ+ 1)−κ〈x〉−σ
∣∣∣∣
L2→L2 . λ

s .

Proof:

(P/λ+ 1)−κ =
1

Γ(κ)

∫ +∞

0
e−t(P/λ+1)tκ−1dt. �

Rem. This also gives elliptic low frequency resolvent estimates∣∣∣∣(P + λ)−κ〈x〉−σ
∣∣∣∣
L2→L2 . λ

s−κ.
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First application

Assume we proved that for ν > max{k, n
2
} and F ∈ C∞0 (R), F ≡ 1 on [0, 10],∣∣∣∣〈x〉−νF (P/λ)

(
P − λ∓ i0)−k 〈x〉−ν

∣∣∣∣
L(L2)

. λ
n
2
−k

(spectrally localized resolvent estimate on a scale λ). We would then like to prove∣∣∣∣〈x〉−ν(P − λ∓ i0)−k 〈x〉−ν
∣∣∣∣
L(L2)

. λ
n
2
−k , λ� 1

or, equivalently ∣∣∣∣〈x〉−νF (P)
(
P − λ∓ i0)−k 〈x〉−ν

∣∣∣∣
L(L2)

. λ
n
2
−k .

Write

F (P) = F (P/λ) +
N∑
`=1

G(Λ−`P/λ)

where
N = [log λ−1], Λ = λ−

1
N ∈ [e, e2]

and
G(p) := F (p)− F (Λp) ≡ 0 near p ∈ [0, 1]

We wish to bound∣∣∣∣〈x〉−νG(Λ−`P/λ)
(
P − λ)−k 〈x〉−ν

∣∣∣∣
L(L2)

.
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First application (continued)

If G̃ ≡ 1 near the support of G , one can write

G(Λ−`P/λ)
(
P − λ)−k = G̃(Λ−`P/λ)

(
G(Λ−`P/λ)

(
P − λ)−k

)
G̃(−Λ−`P/λ)

and thus estimate∣∣∣∣〈x〉−νG(Λ−`P/λ)
(
P − λ)−k 〈x〉−ν

∣∣∣∣
L(L2)

by∣∣∣∣G(Λ−`P/λ)
(
P − λ)−k

∣∣∣∣
L(L2)

∣∣∣∣G̃(Λ−`P/λ)〈x〉−ν
∣∣∣∣2
L(L2)

.
(

Λ−`kλ−k
)(
λsΛs`

)2

with s ∈ [0, n
4

] such that

s =
n

4
if k ≥
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and one observes that
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λ2s−k (Λ2s−k )` .


λ2s−k (Λ2s−k )N+1 ∼ 1 if n

2
> k

N ∼ | log λ| if n
2

= k

λ
n
2
−k if n

2
< k
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Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

φ(H)i [H,A]φ(H) ≥ cφ(H)2.

Let 1/2 < s < 1, Θ(λ) := −
∫∞
λ 〈µ〉

−2sdµ < 0 and

u = ψ(H)(H − z)−1f , z = 1 + iδ (δ > 0), ψ ≡ 1 near 1, φψ = ψ.

Then, one has

2Im
(

Θ(εA)u, (H − z)u
)

=
(
u, i [H,Θ(εA)]u

)
− 2Im(z)(Θ(A)u, u)

where, by some relatively simple functional calculus,

i [H,Θ(εA)] = ε〈εA〉−s i [H,A]〈εA〉−s + ε2〈εA〉−sO
(

1 +
∣∣∣∣[[H,A],A]

∣∣∣∣)〈εA〉−s

and
〈εA〉−sφ(H) = φ(H)〈εA〉−s + 〈εA〉−sO

(
ε
∣∣∣∣[H,A]

∣∣∣∣)〈εA〉−s

This implies

||〈εA〉−su|| ||〈εA〉s(H − z)u|| ≥ Im
(

Θ(εA)u, (H − z)u
)
≥ cε||〈εA〉−su||2 − Cε2||〈εA〉−su||2

i.e. for some constant Cε independent of δ

||〈εA〉−su|| ≤ Cε||〈εA〉s(H − z)u|| ⇒ ||〈εA〉−sψ(H)(H − z)−1〈εA〉−s || ≤ C ′ε
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Some insights on the proof of Theorem 1

We wish to apply the positive commutator method to

P

λ
= SλPλS

−1
λ , Pλ = g jk

(
λ−

1
2 y
)
∂j∂k + λ−

1
2 bj (λ

− 1
2 y)∂j

The operator Pλ has singular coefficients at 0. In fact, if |y | & 1,∣∣∣∂αy (g jk (λ−
1
2 y)− δjk

)∣∣∣ . λ−
|α|

2 〈λ−
1
2 y〉−ρ−|α|

. λ−
|α|

2
∣∣λ− 1

2 y
∣∣−ρ−|α| = λ

ρ
2 |y |−ρ−|α| . λ

ρ
2 〈y〉−ρ−|α|

(similar estimates for λ−
1
2 bj (λ

− 1
2 y))

Proposition 1 If ζ ∈ C∞(Rn) vanishes near 0,

ζ(λ
1
2 x)
(
P/λ+ 1

)−1 ∼ Sλqλ(x ,D)S−1
λ

for some bounded family (bλ)λ�1 of S−2.
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Some insights on the proof of Theorem 1
Assume for simplicity that |g(x)| ≡ 1. If χ ∈ C∞0 (Rn \ 0) eqals 1 near infinity, we set

Aλ = (1− χ)(λ
1
2 x)

(
x · D + D · x

2

)
(1− χ)(λ

1
2 x)

Then, by Proposition 1, there is a bounded family B(λ) of bounded operators s.t.

i
[
(P/λ),Aλ

]
= 2(P/λ) + 〈λ

1
2 x〉−ρB(λ)(P/λ+ 1)

Proposition 2 As λ→ 0 and supp(ϕ)→ {1},∣∣∣∣∣∣ϕ(P/λ)〈λ
1
2 x〉−ρ

∣∣∣∣∣∣→ 0.

By Proposition 2, for λ� 1 and ϕ supported close enough to 1,

ϕ(P/λ)i
[
(P/λ),A]ϕ(P/λ) ≥

3

2
ϕ2(P/λ)− C
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