Sharp time decay estimates for dispersive equations

Jean-Marc Bouclet
Institut de Mathématiques de Toulouse
Joint work with Nicolas Burq

2 Octobre 2018,Toulouse

Sharp time decay estimates for dispersive equations

Jean-Marc Bouclet
Institut de Mathématiques de Toulouse
Joint work with Nicolas Burq

2 Octobre 2018,Toulouse

Introduction

We consider three models of dispersive equations

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

All of them have globally conserved quantities (\sim energy)

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

All of them have globally conserved quantities (\sim energy)

- Schrödinger:

$$
\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}},
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

All of them have globally conserved quantities (\sim energy)

- Schrödinger:

$$
\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}},
$$

- Klein-Gordon:

$$
\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(t)\|_{L^{2}}^{2}=\left\|\partial_{t} v(0)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(0)\|_{L^{2}}^{2}
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

All of them have globally conserved quantities (\sim energy)

- Schrödinger:

$$
\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}}
$$

- Klein-Gordon:

$$
\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(t)\|_{L^{2}}^{2}=\left\|\partial_{t} v(0)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(0)\|_{L^{2}}^{2}
$$

- Waves:

$$
\left\|\partial_{t} w(t)\right\|_{L^{2}}^{2}+\||D| w(t)\|_{L^{2}}^{2}=\left\|\partial_{t} w(0)\right\|_{L^{2}}^{2}+\||D| w(0)\|_{L^{2}}^{2}
$$

Introduction

We consider three models of dispersive equations

- Schrödinger

$$
\left(i \partial_{t}+\Delta\right) u=0, \quad u(t)=e^{i t \Delta} u(0)
$$

- Klein-Gordon

$$
\left(\partial_{t}^{2}-\Delta+1\right) v=0, \quad v(t)=\cos (t\langle D\rangle) v(0)+\frac{\sin (t\langle D\rangle)}{\langle D\rangle} \partial_{t} v(0)
$$

- Waves

$$
\left(\partial_{t}^{2}-\Delta\right) w=0, \quad w(t)=\cos (t|D|) w(0)+\frac{\sin (t|D|)}{|D|} \partial_{t} w(0)
$$

All of them have globally conserved quantities (\sim energy)

- Schrödinger:

$$
\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}}
$$

- Klein-Gordon:

$$
\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(t)\|_{L^{2}}^{2}=\left\|\partial_{t} v(0)\right\|_{L^{2}}^{2}+\|\langle D\rangle v(0)\|_{L^{2}}^{2}
$$

- Waves:

$$
\left\|\partial_{t} w(t)\right\|_{L^{2}}^{2}+\||D| w(t)\|_{L^{2}}^{2}=\left\|\partial_{t} w(0)\right\|_{L^{2}}^{2}+\||D| w(0)\|_{L^{2}}^{2}
$$

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}}
$$

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}},
$$

- Klein-Gordon:

$$
\left(\left\|\partial_{t} v(t)\right\|_{L^{2}\left(B_{R}\right)}^{2}+\|\langle D\rangle v(t)\|_{L^{2}\left(B_{R}\right)}^{2}\right)^{\frac{1}{2}} \lesssim R^{\langle t\rangle^{-\frac{n}{2}}\left(\|v(0)\|_{H^{1}}+\left\|\partial_{t} v(0)\right\|_{L^{2}}\right), ~(1)}
$$

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}}
$$

- Klein-Gordon:

$$
\left(\left\|\partial_{t} v(t)\right\|_{L^{2}\left(B_{R}\right)}^{2}+\|\langle D\rangle v(t)\|_{L^{2}\left(B_{R}\right)}^{2}\right)^{\frac{1}{2}} \lesssim_{R}\langle t\rangle^{-\frac{n}{2}}\left(\|v(0)\|_{H^{1}}+\left\|\partial_{t} v(0)\right\|_{L^{2}}\right)
$$

For Schrödinger, this is a straightforward consequence of the fundamental solution

$$
\left[e^{i t \Delta}\right](x, y)=\frac{1}{(4 i \pi t)^{\frac{n}{2}}} \exp \left(i \frac{|x-y|^{2}}{4 t}\right)
$$

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}},
$$

- Klein-Gordon:

$$
\left(\left\|\partial_{t} v(t)\right\|_{L^{2}\left(B_{R}\right)}^{2}+\|\langle D\rangle v(t)\|_{L^{2}\left(B_{R}\right)}^{2}\right)^{\frac{1}{2}} \lesssim_{R}\langle t\rangle^{-\frac{n}{2}}\left(\|v(0)\|_{H^{1}}+\left\|\partial_{t} v(0)\right\|_{L^{2}}\right)
$$

For Schrödinger, this is a straightforward consequence of the fundamental solution

$$
\left[e^{i t \Delta}\right](x, y)=\frac{1}{(4 i \pi t)^{\frac{n}{2}}} \exp \left(i \frac{|x-y|^{2}}{4 t}\right)
$$

Heuristically analogue for Klein-Gordon since, at low frequencies $(\xi \rightarrow 0)$

$$
e^{i t\langle\xi\rangle}=e^{i t \sqrt{|\xi|^{2}+1}} \approx e^{i t} e^{i \frac{t}{2}|\xi|^{2}}
$$

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}},
$$

- Klein-Gordon:

$$
\left(\left\|\partial_{t} v(t)\right\|_{L^{2}\left(B_{R}\right)}^{2}+\|\langle D\rangle v(t)\|_{L^{2}\left(B_{R}\right)}^{2}\right)^{\frac{1}{2}} \lesssim_{R}\langle t\rangle^{-\frac{n}{2}}\left(\|v(0)\|_{H^{1}}+\left\|\partial_{t} v(0)\right\|_{L^{2}}\right)
$$

For Schrödinger, this is a straightforward consequence of the fundamental solution

$$
\left[e^{i t \Delta}\right](x, y)=\frac{1}{(4 i \pi t)^{\frac{n}{2}}} \exp \left(i \frac{|x-y|^{2}}{4 t}\right)
$$

Heuristically analogue for Klein-Gordon since, at low frequencies $(\xi \rightarrow 0)$

$$
e^{i t\langle\xi\rangle}=e^{i t \sqrt{|\xi|^{2}+1}} \approx e^{i t} e^{i \frac{t}{2}|\xi|^{2}}
$$

i.e. Klein-Gordon behaves like Schrödinger at low frequencies, modulo a phase.

Introduction

By localizing those energies in a ball $B_{R}=\{|x| \leq R\}$ and selecting sufficiently decaying data (ex. $C_{0}^{\infty}\left(B_{R}\right)$), one has some time decay

- Schrödinger:

$$
\|u(t)\|_{L^{2}\left(B_{R}\right)} \lesssim R\langle t\rangle^{-\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}},
$$

- Klein-Gordon:

$$
\left(\left\|\partial_{t} v(t)\right\|_{L^{2}\left(B_{R}\right)}^{2}+\|\langle D\rangle v(t)\|_{L^{2}\left(B_{R}\right)}^{2}\right)^{\frac{1}{2}} \lesssim_{R}\langle t\rangle^{-\frac{n}{2}}\left(\|v(0)\|_{H^{1}}+\left\|\partial_{t} v(0)\right\|_{L^{2}}\right)
$$

For Schrödinger, this is a straightforward consequence of the fundamental solution

$$
\left[e^{i t \Delta}\right](x, y)=\frac{1}{(4 i \pi t)^{\frac{n}{2}}} \exp \left(i \frac{|x-y|^{2}}{4 t}\right)
$$

Heuristically analogue for Klein-Gordon since, at low frequencies $(\xi \rightarrow 0)$

$$
e^{i t\langle\xi\rangle}=e^{i t \sqrt{|\xi|^{2}+1}} \approx e^{i t} e^{i \frac{t}{2}|\xi|^{2}}
$$

i.e. Klein-Gordon behaves like Schrödinger at low frequencies, modulo a phase. These time decay rates are sharp.

Introduction

For the wave equation, one has the following general estimates

Introduction

For the wave equation, one has the following general estimates

$$
\left\|\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{1-n}
$$

Introduction

For the wave equation, one has the following general estimates

$$
\left\|\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{1-n}
$$

and

$$
\left\|\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{-n}
$$

Introduction

For the wave equation, one has the following general estimates

$$
\left\|\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{1-n}
$$

and

$$
\left\|\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{-n}
$$

Sharp in even dimensions.

Introduction

For the wave equation, one has the following general estimates

$$
\left\|\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{1-n}
$$

and

$$
\left\|\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{-n}
$$

Sharp in even dimensions. In odd dimensions,

$$
\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}=\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}} \equiv 0 \quad|t|>T_{R}
$$

Introduction

For the wave equation, one has the following general estimates

$$
\left\|\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{1-n}
$$

and

$$
\left\|\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim R\langle t\rangle^{-n}
$$

Sharp in even dimensions. In odd dimensions,

$$
\mathbb{1}_{B_{R}} \frac{\sin (t|D|)}{|D|} \mathbb{1}_{B_{R}}=\mathbb{1}_{B_{R}} \cos (t|D|) \mathbb{1}_{B_{R}} \equiv 0 \quad|t|>T_{R}
$$

Follows from the Huygens Principle, i.e.

$$
\operatorname{supp}([\cos (t|D|)]) \subset\{(x, y):|x-y|=|t|\}
$$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric,

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.
P is self-adjoint wrt to the measure $|g(x)| d x$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right)
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.
P is self-adjoint wrt to the measure $|g(x)| d x \Rightarrow$ Spectral Theorem

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right),
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.
P is self-adjoint wrt to the measure $|g(x)| d x \Rightarrow$ Spectral Theorem

$$
f(P)=\int_{\sigma(P)} f(\lambda) d E_{\lambda}
$$

where $\left(E_{\lambda}\right)_{\lambda}$ is the spectral resolution of P.

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right),
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.
P is self-adjoint wrt to the measure $|g(x)| d x \Rightarrow$ Spectral Theorem

$$
f(P)=\int_{\sigma(P)} f(\lambda) d E_{\lambda}
$$

where $\left(E_{\lambda}\right)_{\lambda}$ is the spectral resolution of P. In particular

$$
e^{-i t P}=\int_{\sigma(P)} e^{-i t \lambda} d E_{\lambda} .
$$

Question

What can one say if the Euclidean Laplacian $-\Delta$ is replaced by the Laplace-Beltrami operator for an asymptotically Euclidean metric, i.e. by

$$
P=-|g(x)|^{-1} \partial_{j}\left(|g(x)| g^{j k}(x) \partial_{k}\right),
$$

where $\left(g^{j k}(x)\right)$ is a positive definite matrix for each x,

$$
|g(x)|:=\operatorname{det}\left(g^{j k}(x)\right)^{-\frac{1}{2}}
$$

and, for some $\rho>0$

$$
\left|\partial^{\alpha}\left(g^{j k}(x)-\delta_{j k}\right)\right| \leq C\langle x\rangle^{-\rho-|\alpha|}
$$

\Leftrightarrow long range perturbation of the Euclidean metric.
P is self-adjoint wrt to the measure $|g(x)| d x \Rightarrow$ Spectral Theorem

$$
f(P)=\int_{\sigma(P)} f(\lambda) d E_{\lambda}
$$

where $\left(E_{\lambda}\right)_{\lambda}$ is the spectral resolution of P. In particular

$$
e^{-i t P}=\int_{\sigma(P)} e^{-i t \lambda} d E_{\lambda} .
$$

Decay in t of $e^{-i t P} \longleftrightarrow$ Smoothness in λ of the spectral measure $d E_{\lambda}$.

From energy decay to resolvent estimates

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
\begin{aligned}
d E_{\lambda} & =\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda \\
\text { où }(P-\lambda \mp i 0)^{-1} & =\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1} .
\end{aligned}
$$

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
\begin{aligned}
d E_{\lambda} & =\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda \\
\text { où }(P-\lambda \mp i 0)^{-1} & =\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1} .
\end{aligned}
$$

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
\begin{aligned}
d E_{\lambda} & =\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda \\
\text { où }(P-\lambda \mp i 0)^{-1} & =\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1} .
\end{aligned}
$$

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem:

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}=k!\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1-k}\langle x\rangle^{-\nu}
$$

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}=k!\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1-k}\langle x\rangle^{-\nu}
$$

at the thresholds

$$
\lambda \rightarrow+\infty \text { (high frequencies) }
$$

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}=k!\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1-k}\langle x\rangle^{-\nu}
$$

at the thresholds

$$
\lambda \rightarrow+\infty \text { (high frequencies), } \quad \lambda \rightarrow 0 \text { (low frequencies). }
$$

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}=k!\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1-k}\langle x\rangle^{-\nu}
$$

at the thresholds

$$
\lambda \rightarrow+\infty \text { (high frequencies), } \quad \lambda \rightarrow 0 \text { (low frequencies). }
$$

Mnay results at high frequencies.

From energy decay to resolvent estimates

- $\sigma(P)=[0,+\infty)$ and P has no embedded eigenvalues.
- Stone's formula

$$
d E_{\lambda}=\frac{1}{2 i \pi}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda
$$

où $(P-\lambda \mp i 0)^{-1}=\lim _{\epsilon \rightarrow 0^{+}}(P-\lambda \mp i \epsilon)^{-1}$.

- Jensen-Mourre-Perry Theorem (1984). If $\nu>k+\frac{1}{2}$, then

$$
\lambda \mapsto\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}
$$

is C^{k} on $(0,+\infty)$ with values in $\mathcal{L}\left(L^{2}\right)$ (bounded op. on $\left.L^{2}\right)$.

- Left problem: behavior of

$$
\frac{d^{k}}{d \lambda^{k}}\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1}\langle x\rangle^{-\nu}=k!\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-1-k}\langle x\rangle^{-\nu}
$$

at the thresholds

$$
\lambda \rightarrow+\infty \text { (high frequencies), } \quad \lambda \rightarrow 0 \text { (low frequencies). }
$$

Mnay results at high frequencies. Much less at low frequencies.

Known results for high frequencies

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics.

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez,...)

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{C \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez,...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{C \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\begin{aligned}
& \qquad \psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \quad \text { (low frequency cutoff) } \\
& \text { and } \sigma=1 \text { or } \frac{1}{2}, m=0 \text { or } 1
\end{aligned}
$$

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{C \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds,

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation Up to a loss (or gain) of smoothness,

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation Up to a loss (or gain) of smoothness, the time decay is as fast as we wish,

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation Up to a loss (or gain) of smoothness, the time decay is as fast as we wish, for any equation, provided one cuts the low frequencies off.

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation Up to a loss (or gain) of smoothness, the time decay is as fast as we wish, for any equation, provided one cuts the low frequencies off.
- Conclusion

Known results for high frequencies

- Resolvent estimates (regime $\lambda \rightarrow+\infty$)
- at worst $O\left(e^{c \lambda^{1 / 2}}\right)$ (Burq, Cardoso-Vodev)
- at best $O\left(\lambda^{-1 / 2}\right)$ if no trapped geodesics. In fact

$$
\left\|\langle x\rangle^{-k+\frac{1}{2}-}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-k+\frac{1}{2}-}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-k / 2}
$$

(Robert-Tamura, Wang, Gérard-Martinez, ...)

- Intermediate situations (weak trapping) : Ikawa for obstacles, Nonnenmacher-Zworski $O\left(\lambda^{-1 / 2} \log \lambda\right)$, Christianson and Christianson-Wunsch $O\left(\lambda^{\sigma}\right)$
- Consequences on evolution equations If

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \equiv 1 \text { near } 0 \text { (low frequency cutoff) }
$$

and $\sigma=1$ or $\frac{1}{2}, m=0$ or 1 and if one has polynomial resolvent bounds, then

$$
\left\|\langle x\rangle^{-k-1} e^{i t(P+m)^{\sigma}}(1-\psi(P)) u_{0}\right\|_{L^{2}} \lesssim\langle t\rangle^{-k}\left\|\langle x\rangle^{k+1} u_{0}\right\|_{H^{s}}
$$

where $s \in \mathbb{R}$ depends on k, σ and the decay (or growth) rate of the resolvent.

- Interpretation Up to a loss (or gain) of smoothness, the time decay is as fast as we wish, for any equation, provided one cuts the low frequencies off.
- Conclusion Sharp time decay rates depend on low frequencies.

Results including low frequencies

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1)
$$

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right)
$$

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,..\rightarrow Exponential decay for the waves in odd dim.

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations Jensen-Kato, Murata, Rauch, Journé-Soffer-Sogge, Wang \rightarrow Sharp estimates for Schrödinger
- Long range perturbations

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations Jensen-Kato, Murata, Rauch, Journé-Soffer-Sogge, Wang \rightarrow Sharp estimates for Schrödinger
- Long range perturbations
- Schlag-Soffer-Staubach (2010): exact conical models (\rightarrow pb 1D)

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations Jensen-Kato, Murata, Rauch, Journé-Soffer-Sogge, Wang \rightarrow Sharp estimates for Schrödinger
- Long range perturbations
- Schlag-Soffer-Staubach (2010): exact conical models (\rightarrow pb 1D)
- Bony-Häfner (2012): ϵ sharp estimates

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations Jensen-Kato, Murata, Rauch, Journé-Soffer-Sogge, Wang \rightarrow Sharp estimates for Schrödinger
- Long range perturbations
- Schlag-Soffer-Staubach (2010): exact conical models (\rightarrow pb 1D)
- Bony-Häfner (2012): ϵ sharp estimates
- Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics (polyhomogeneous expansion of the metric)

Results including low frequencies

- Example in dimension 3, the kernel of $(-\Delta-z)^{-1}$ is

$$
K_{z}=c \frac{e^{i z^{1 / 2}|x-y|}}{|x-y|}=O(1), \quad \partial_{z} K_{z}=O\left(|z|^{-1 / 2}\right), \quad \partial_{z}^{2} K_{z}=O\left(|z|^{-3 / 2}\right)
$$

Essentially, one can perform one and a half IBP in the spectral representation of $e^{i t \Delta} \Rightarrow$ decay rate $=t^{-3 / 2}$.

- Intuition Limited time decay rates are related to singularities of the resolvent at $z=0$
- Compactly supported perturbations Morawetz-Ralston-Strauss, Lax-Phillips, Vainberg,... \rightarrow Exponential decay for the waves in odd dim.
- Very short range perturbations Jensen-Kato, Murata, Rauch, Journé-Soffer-Sogge, Wang \rightarrow Sharp estimates for Schrödinger
- Long range perturbations
- Schlag-Soffer-Staubach (2010): exact conical models (\rightarrow pb 1D)
- Bony-Häfner (2012): ϵ sharp estimates
- Guillarmou-Hassell-Sikora (2013): sharp estimates for scattering metrics (polyhomogeneous expansion of the metric)

Our results on the resolvent

Theorem 1 (B., Burq)

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$ and if moreover $\nu>\frac{n}{2}$,

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$ and if moreover $\nu>\frac{n}{2}$,

$$
\left\|\frac{d^{j}}{d \lambda^{j}}\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\frac{n}{2}-1-j} .
$$

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$ and if moreover $\nu>\frac{n}{2}$,

$$
\left\|\frac{d^{j}}{d \lambda^{j}}\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\frac{n}{2}-1-j} .
$$

- For the resolvent, one has

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\min \left\{0, \frac{n}{2}-k\right\}},
$$

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$ and if moreover $\nu>\frac{n}{2}$,

$$
\left\|\frac{d^{j}}{d \lambda^{j}}\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\frac{n}{2}-1-j} .
$$

- For the resolvent, one has

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\min \left\{0, \frac{n}{2}-k\right\}},
$$

unless n is even and $k=\frac{n}{2}$

Our results on the resolvent

Theorem 1 (B., Burq) Let $n \geq 2, k \in \mathbb{N}$ and $\nu>k$. Then

- The map

$$
\lambda \mapsto\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu} \in \mathcal{L}\left(L^{2}\right)
$$

is C^{k} on $(0,1]$ and if moreover $\nu>\frac{n}{2}$,

$$
\left\|\frac{d^{j}}{d \lambda^{j}}\langle x\rangle^{-\nu} E_{\lambda}^{\prime}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\frac{n}{2}-1-j} .
$$

- For the resolvent, one has

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\min \left\{0, \frac{n}{2}-k\right\}}
$$

unless n is even and $k=\frac{n}{2}$ in which case

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-\frac{n}{2}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C|\log \lambda| .
$$

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq)

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq) Let $n \geq 2$ and $F \in C_{0}^{\infty}(\mathbb{R})$

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq) Let $n \geq 2$ and $F \in C_{0}^{\infty}(\mathbb{R})$

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq) Let $n \geq 2$ and $F \in C_{0}^{\infty}(\mathbb{R})$

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq) Let $n \geq 2$ and $F \in C_{0}^{\infty}(\mathbb{R})$

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}}
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} F(P) \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{1-n}
$$

Consequences on evolution equations (low frequencies)

Theorem 2 (B., Burq) Let $n \geq 2$ and $F \in C_{0}^{\infty}(\mathbb{R})$

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}}
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} F(P) \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{1-n}
$$

and

$$
\left\|\langle x\rangle^{-\nu} F(P) e^{i t \sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-n} .
$$

Solution to the initial problem

Corollary 3 (B., Burq)

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{1}} \leq C\langle t\rangle^{1-n}
$$

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{1}} \leq C\langle t\rangle^{1-n}
$$

and

$$
\left\|\langle x\rangle^{-\nu} \cos (t \sqrt{P})\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-n} .
$$

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{1}} \leq C\langle t\rangle^{1-n}
$$

and

$$
\left\|\langle x\rangle^{-\nu} \cos (t \sqrt{P})\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-n} .
$$

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{1}} \leq C\langle t\rangle^{1-n}
$$

and

$$
\left\|\langle x\rangle^{-\nu} \cos (t \sqrt{P})\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-n} .
$$

- Sharp estimates, excepted in odd dimensions for the waves.

Solution to the initial problem

Corollary 3 (B., Burq) If $n \geq 2$ and the geodesic flow is non-trapping

- Schrödinger if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t P}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{\frac{n}{2}}} \leq C|t|^{-\frac{n}{2}} .
$$

- Klein-Gordon if $\nu>\left[\frac{n}{2}\right]+2$,

$$
\left\|\langle x\rangle^{-\nu} e^{i t \sqrt{P+1}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-\frac{n}{2}} .
$$

- Waves if $\nu>n+1$

$$
\left\|\langle x\rangle^{-\nu} \frac{\sin (t \sqrt{P})}{\sqrt{P}}\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow H^{1}} \leq C\langle t\rangle^{1-n}
$$

and

$$
\left\|\langle x\rangle^{-\nu} \cos (t \sqrt{P})\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-n} .
$$

- Sharp estimates, excepted in odd dimensions for the waves.
- One can add an obstacle.

Proof of Theorem 2

Proof of Theorem 2

We only consider Schrödinger.

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$.

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd.

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,
$t^{\frac{n-1}{2}} F(P) e^{i t P}=$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,
$t^{\frac{n-1}{2}} F(P) e^{i t P}=\int_{0}^{\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n-1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,

$$
\begin{aligned}
t^{\frac{n-1}{2}} F(P) e^{i t P} & =\int_{0}^{\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n-1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =\int_{0}^{t^{-1}} e^{i t \lambda} O\left(\lambda^{-\frac{1}{2}}\right) d \lambda
\end{aligned}
$$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,

$$
\begin{aligned}
t^{\frac{n-1}{2}} F(P) e^{i t P} & =\int_{0}^{\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n-1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =\int_{0}^{t^{-1}} e^{i t \lambda} O\left(\lambda^{-\frac{1}{2}}\right) d \lambda+\frac{1}{t} O\left(t^{\frac{1}{2}}\right)+\int_{t^{-1}}^{+\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n+1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda
\end{aligned}
$$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,

$$
\begin{aligned}
t^{\frac{n-1}{2}} F(P) e^{i t P} & =\int_{0}^{\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n-1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =\int_{0}^{t^{-1}} e^{i t \lambda} O\left(\lambda^{-\frac{1}{2}}\right) d \lambda+\frac{1}{t} O\left(t^{\frac{1}{2}}\right)+\int_{t^{-1}}^{+\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n+1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =O\left(t^{-\frac{1}{2}}\right)
\end{aligned}
$$

Proof of Theorem 2

We only consider Schrödinger.
write

$$
F(P) e^{i t P}=\int_{0}^{\infty} F(\lambda) e^{i t \lambda} E_{\lambda}^{\prime} d \lambda
$$

where, by Theorem 1,

$$
\partial_{\lambda}^{j} E_{\lambda}^{\prime}=O\left(\lambda^{\frac{n}{2}-1-j}\right)
$$

In particular, one gets 0 at $\lambda=0$ as long as $\frac{n}{2}-1-j>0$. Assume e.g that n is odd. By IBP,

$$
\begin{aligned}
t^{\frac{n-1}{2}} F(P) e^{i t P} & =\int_{0}^{\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n-1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =\int_{0}^{t^{-1}} e^{i t \lambda} O\left(\lambda^{-\frac{1}{2}}\right) d \lambda+\frac{1}{t} O\left(t^{\frac{1}{2}}\right)+\int_{t^{-1}}^{+\infty} e^{i t \lambda}\left(i \partial_{\lambda}\right)^{\frac{n+1}{2}}\left(F(\lambda) E_{P}^{\prime}(\lambda)\right) d \lambda \\
& =O\left(t^{-\frac{1}{2}}\right)
\end{aligned}
$$

Analogous for n even.

Some insights on the proof of Theorem 1

Three tools

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

\Rightarrow reduces the problem to study the family $(P / \lambda)_{\lambda \ll 1}$ near energy/frequency 1 .

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

\Rightarrow reduces the problem to study the family $(P / \lambda)_{\lambda \ll 1}$ near energy/frequency 1 . If $P=-\Delta$

$$
\frac{\Delta}{\lambda}=S_{\lambda} \Delta S_{\lambda}^{-1}, \quad \text { où } \quad S_{\lambda} u(x)=\lambda^{\frac{n}{2}} u\left(\lambda^{\frac{1}{2}} x\right)
$$

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

\Rightarrow reduces the problem to study the family $(P / \lambda)_{\lambda \ll 1}$ near energy/frequency 1 . If $P=-\Delta$

$$
\frac{\Delta}{\lambda}=S_{\lambda} \Delta S_{\lambda}^{-1}, \quad \text { où } \quad S_{\lambda} u(x)=\lambda^{\frac{n}{2}} u\left(\lambda^{\frac{1}{2}} x\right)
$$

reduces the resolvent analysis at energy 1 , modulo a rescaling.

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

\Rightarrow reduces the problem to study the family $(P / \lambda)_{\lambda \ll 1}$ near energy/frequency 1 . If $P=-\Delta$

$$
\frac{\Delta}{\lambda}=S_{\lambda} \Delta S_{\lambda}^{-1}, \quad \text { où } \quad S_{\lambda} u(x)=\lambda^{\frac{n}{2}} u\left(\lambda^{\frac{1}{2}} x\right)
$$

reduces the resolvent analysis at energy 1 , modulo a rescaling. One can then use

$$
i[-\Delta, A]=-2 \Delta, \quad A=\frac{x \cdot \nabla+\nabla \cdot x}{2 i}
$$

Some insights on the proof of Theorem 1

Three tools

- Positive commutators techniques
- Rescaled pseudo-differential calculus
- Heat flow estimates to handle the uncertainty region

Starting point:

$$
(P-\lambda \mp i 0)^{-1}=\frac{1}{\lambda}\left(\frac{P}{\lambda}-1 \mp i 0\right)^{-1}
$$

\Rightarrow reduces the problem to study the family $(P / \lambda)_{\lambda \ll 1}$ near energy/frequency 1 . If $P=-\Delta$

$$
\frac{\Delta}{\lambda}=S_{\lambda} \Delta S_{\lambda}^{-1}, \quad \text { où } \quad S_{\lambda} u(x)=\lambda^{\frac{n}{2}} u\left(\lambda^{\frac{1}{2}} x\right)
$$

reduces the resolvent analysis at energy 1 , modulo a rescaling. One can then use

$$
i[-\Delta, A]=-2 \Delta, \quad A=\frac{x \cdot \nabla+\nabla \cdot x}{2 i}
$$

to get a positive commutator estimate

$$
\phi(-\Delta) i[-\Delta, A] \phi(-\Delta) \geq c \phi^{2}(-\Delta)
$$

with $c>0$ and $\phi \in C_{0}^{\infty}(\mathbb{R}), \phi \equiv 1$ near 1.

Heat flow estimates and applications

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}}
$$

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\sqrt{P} u\|_{L^{2}}
$$

it is well known that one gets

$$
\left\|e^{-t P}\right\|_{L^{p} \rightarrow L^{2}} \lesssim t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)}
$$

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\sqrt{P} u\|_{L^{2}}
$$

it is well known that one gets

$$
\left\|e^{-t P}\right\|_{L^{p} \rightarrow L^{2}} \lesssim t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)}
$$

Lemma. If $s \in\left[0, \frac{n}{4}\right], \sigma>2 s$ and $\kappa>s$,

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\sqrt{P} u\|_{L^{2}}
$$

it is well known that one gets

$$
\left\|e^{-t P}\right\|_{L^{p} \rightarrow L^{2}} \lesssim t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)}
$$

Lemma. If $s \in\left[0, \frac{n}{4}\right], \sigma>2 s$ and $\kappa>s$,

$$
\left\|(P / \lambda+1)^{-\kappa}\langle x\rangle^{-\sigma}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{s} .
$$

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\sqrt{P} u\|_{L^{2}}
$$

it is well known that one gets

$$
\left\|e^{-t P}\right\|_{L^{p} \rightarrow L^{2}} \lesssim t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)}
$$

Lemma. If $s \in\left[0, \frac{n}{4}\right], \sigma>2 s$ and $\kappa>s$,

$$
\left\|(P / \lambda+1)^{-\kappa}\langle x\rangle^{-\sigma}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{s} .
$$

Proof:

$$
(P / \lambda+1)^{-\kappa}=\frac{1}{\Gamma(\kappa)} \int_{0}^{+\infty} e^{-t(P / \lambda+1)} t^{\kappa-1} d t
$$

Heat flow estimates and applications

From the Nash inequality,

$$
\|u\|_{L^{2}}^{1+\frac{2}{n}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\nabla u\|_{L^{2}} \lesssim\|u\|_{L^{1}}^{\frac{2}{n}}\|\sqrt{P} u\|_{L^{2}}
$$

it is well known that one gets

$$
\left\|e^{-t P}\right\|_{L^{p} \rightarrow L^{2}} \lesssim t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)}
$$

Lemma. If $s \in\left[0, \frac{n}{4}\right], \sigma>2 s$ and $\kappa>s$,

$$
\left\|(P / \lambda+1)^{-\kappa}\langle x\rangle^{-\sigma}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{s} .
$$

Proof:

$$
(P / \lambda+1)^{-\kappa}=\frac{1}{\Gamma(\kappa)} \int_{0}^{+\infty} e^{-t(P / \lambda+1)} t^{\kappa-1} d t
$$

Rem. This also gives elliptic low frequency resolvent estimates

$$
\left\|(P+\lambda)^{-\kappa}\langle x\rangle^{-\sigma}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{s-\kappa} .
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ).

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

or, equivalently

$$
\left\|\langle x\rangle^{-\nu} F(P)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

or, equivalently

$$
\left\|\langle x\rangle^{-\nu} F(P)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k} .
$$

Write

$$
F(P)=F(P / \lambda)+\sum_{\ell=1}^{N} G\left(\Lambda^{-\ell} P / \lambda\right)
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

or, equivalently

$$
\left\|\langle x\rangle^{-\nu} F(P)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k} .
$$

Write

$$
F(P)=F(P / \lambda)+\sum_{\ell=1}^{N} G\left(\Lambda^{-\ell} P / \lambda\right)
$$

where

$$
N=\left[\log \lambda^{-1}\right], \quad \Lambda=\lambda^{-\frac{1}{N}} \in\left[e, e^{2}\right]
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

or, equivalently

$$
\left\|\langle x\rangle^{-\nu} F(P)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k} .
$$

Write

$$
F(P)=F(P / \lambda)+\sum_{\ell=1}^{N} G\left(\Lambda^{-\ell} P / \lambda\right)
$$

where

$$
N=\left[\log \lambda^{-1}\right], \quad \Lambda=\lambda^{-\frac{1}{N}} \in\left[e, e^{2}\right]
$$

and

$$
G(p):=F(p)-F(\Lambda p) \equiv 0 \text { near } p \in[0,1]
$$

First application

Assume we proved that for $\nu>\max \left\{k, \frac{n}{2}\right\}$ and $F \in C_{0}^{\infty}(\mathbb{R}), F \equiv 1$ on $[0,10]$,

$$
\left\|\langle x\rangle^{-\nu} F(P / \lambda)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

(spectrally localized resolvent estimate on a scale λ). We would then like to prove

$$
\left\|\langle x\rangle^{-\nu}(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}, \quad \lambda \ll 1
$$

or, equivalently

$$
\left\|\langle x\rangle^{-\nu} F(P)(P-\lambda \mp i 0)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)} \lesssim \lambda^{\frac{n}{2}-k}
$$

Write

$$
F(P)=F(P / \lambda)+\sum_{\ell=1}^{N} G\left(\Lambda^{-\ell} P / \lambda\right)
$$

where

$$
N=\left[\log \lambda^{-1}\right], \quad \Lambda=\lambda^{-\frac{1}{N}} \in\left[e, e^{2}\right]
$$

and

$$
G(p):=F(p)-F(\Lambda p) \equiv 0 \text { near } p \in[0,1]
$$

We wish to bound

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by

$$
\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by
$\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}$
with $s \in\left[0, \frac{n}{4}\right]$ such that

$$
s=\frac{n}{4} \quad \text { if } k \geq \frac{n}{2} \quad \text { or } \quad \nu>2 s>k \quad \text { if } k<\frac{n}{2}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by
$\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}$
with $s \in\left[0, \frac{n}{4}\right]$ such that

$$
s=\frac{n}{4} \quad \text { if } k \geq \frac{n}{2} \quad \text { or } \quad \nu>2 s>k \quad \text { if } k<\frac{n}{2}
$$

and one observes that

$$
\sum_{\ell=1}^{N} \lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{\ell} \lesssim
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by
$\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}$
with $s \in\left[0, \frac{n}{4}\right]$ such that

$$
s=\frac{n}{4} \quad \text { if } k \geq \frac{n}{2} \quad \text { or } \quad \nu>2 s>k \quad \text { if } k<\frac{n}{2}
$$

and one observes that

$$
\sum_{\ell=1}^{N} \lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{\ell} \lesssim \begin{cases}\lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{N+1} \sim 1 & \text { if } \frac{n}{2}>k \\ & \end{cases}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by
$\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}$
with $s \in\left[0, \frac{n}{4}\right]$ such that

$$
s=\frac{n}{4} \quad \text { if } k \geq \frac{n}{2} \quad \text { or } \quad \nu>2 s>k \quad \text { if } k<\frac{n}{2}
$$

and one observes that

$$
\sum_{\ell=1}^{N} \lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{\ell} \lesssim \begin{cases}\lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{N+1} \sim 1 & \text { if } \frac{n}{2}>k \\ N \sim|\log \lambda| & \text { if } \frac{n}{2}=k\end{cases}
$$

First application (continued)

If $\tilde{G} \equiv 1$ near the support of G, one can write

$$
G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}=\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\left(G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right) \tilde{G}\left(-\Lambda^{-\ell} P / \lambda\right)
$$

and thus estimate

$$
\left\|\langle x\rangle^{-\nu} G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}
$$

by
$\left\|G\left(\Lambda^{-\ell} P / \lambda\right)(P-\lambda)^{-k}\right\|_{\mathcal{L}\left(L^{2}\right)}\left\|\tilde{G}\left(\Lambda^{-\ell} P / \lambda\right)\langle x\rangle^{-\nu}\right\|_{\mathcal{L}\left(L^{2}\right)}^{2} \lesssim\left(\Lambda^{-\ell k} \lambda^{-k}\right)\left(\lambda^{s} \Lambda^{s \ell}\right)^{2}$
with $s \in\left[0, \frac{n}{4}\right]$ such that

$$
s=\frac{n}{4} \quad \text { if } k \geq \frac{n}{2} \quad \text { or } \quad \nu>2 s>k \quad \text { if } k<\frac{n}{2}
$$

and one observes that

$$
\sum_{\ell=1}^{N} \lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{\ell} \lesssim \begin{cases}\lambda^{2 s-k}\left(\Lambda^{2 s-k}\right)^{N+1} \sim 1 & \text { if } \frac{n}{2}>k \\ N \sim|\log \lambda| & \text { if } \frac{n}{2}=k \\ \lambda^{\frac{n}{2}-k} & \text { if } \frac{n}{2}<k\end{cases}
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\begin{aligned}
& \qquad(H) i[H, A] \phi(H) \geq c \phi(H)^{2} . \\
& \text { Let } 1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0 \text { and } \\
& u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi .
\end{aligned}
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

where, by some relatively simple functional calculus,

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

where, by some relatively simple functional calculus,

$$
i[H, \Theta(\varepsilon A)]=\varepsilon\langle\varepsilon A\rangle^{-s} i[H, A]\langle\varepsilon A\rangle^{-s}+\varepsilon^{2}\langle\varepsilon A\rangle^{-s} O(1+\|[[H, A], A]\|)\langle\varepsilon A\rangle^{-s}
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

where, by some relatively simple functional calculus,

$$
i[H, \Theta(\varepsilon A)]=\varepsilon\langle\varepsilon A\rangle^{-s} i[H, A]\langle\varepsilon A\rangle^{-s}+\varepsilon^{2}\langle\varepsilon A\rangle^{-s} O(1+\|[[H, A], A]\|)\langle\varepsilon A\rangle^{-s}
$$

and

$$
\langle\varepsilon A\rangle^{-s} \phi(H)=\phi(H)\langle\varepsilon A\rangle^{-s}+\langle\varepsilon A\rangle^{-s} O(\varepsilon\|[H, A]\|)\langle\varepsilon A\rangle^{-s}
$$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

where, by some relatively simple functional calculus,

$$
i[H, \Theta(\varepsilon A)]=\varepsilon\langle\varepsilon A\rangle^{-s} i[H, A]\langle\varepsilon A\rangle^{-s}+\varepsilon^{2}\langle\varepsilon A\rangle^{-s} O(1+\|[[H, A], A]\|)\langle\varepsilon A\rangle^{-s}
$$

and

$$
\langle\varepsilon A\rangle^{-s} \phi(H)=\phi(H)\langle\varepsilon A\rangle^{-s}+\langle\varepsilon A\rangle^{-s} O(\varepsilon\|[H, A]\|)\langle\varepsilon A\rangle^{-s}
$$

This implies
$\left\|\langle\varepsilon A\rangle^{-s} u\right\|\left\|\langle\varepsilon A\rangle^{s}(H-z) u\right\| \geq \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u) \geq c \varepsilon\left\|\langle\varepsilon A\rangle^{-s} u\right\|^{2}-C \varepsilon^{2}\left\|\langle\varepsilon A\rangle^{-s} u\right\|^{2}$

Positive commutators and resolvent (E. Mourre - proof by C. Gérard)
Assume that for some self-adjoint operators A and H,

$$
\phi(H) i[H, A] \phi(H) \geq c \phi(H)^{2} .
$$

Let $1 / 2<s<1, \Theta(\lambda):=-\int_{\lambda}^{\infty}\langle\mu\rangle^{-2 s} d \mu<0$ and

$$
u=\psi(H)(H-z)^{-1} f, \quad z=1+i \delta \quad(\delta>0), \quad \psi \equiv 1 \text { near } 1, \phi \psi=\psi
$$

Then, one has

$$
2 \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u)=(u, i[H, \Theta(\varepsilon A)] u)-2 \operatorname{lm}(z)(\Theta(A) u, u)
$$

where, by some relatively simple functional calculus,

$$
i[H, \Theta(\varepsilon A)]=\varepsilon\langle\varepsilon A\rangle^{-s} i[H, A]\langle\varepsilon A\rangle^{-s}+\varepsilon^{2}\langle\varepsilon A\rangle^{-s} O(1+\|[[H, A], A]\|)\langle\varepsilon A\rangle^{-s}
$$

and

$$
\langle\varepsilon A\rangle^{-s} \phi(H)=\phi(H)\langle\varepsilon A\rangle^{-s}+\langle\varepsilon A\rangle^{-s} O(\varepsilon\|[H, A]\|)\langle\varepsilon A\rangle^{-s}
$$

This implies
$\left\|\langle\varepsilon A\rangle^{-s} u\right\|\left\|\langle\varepsilon A\rangle^{s}(H-z) u\right\| \geq \operatorname{lm}(\Theta(\varepsilon A) u,(H-z) u) \geq c \varepsilon\left\|\langle\varepsilon A\rangle^{-s} u\right\|^{2}-C \varepsilon^{2}\left\|\langle\varepsilon A\rangle^{-s} u\right\|^{2}$
i.e. for some constant C_{ε} independent of δ

$$
\left\|\langle\varepsilon A\rangle^{-s} u\right\| \leq C_{\varepsilon}\left\|\langle\varepsilon A\rangle^{s}(H-z) u\right\| \Rightarrow\left\|\langle\varepsilon A\rangle^{-s} \psi(H)(H-z)^{-1}\langle\varepsilon A\rangle^{-s}\right\| \leq C_{\varepsilon}^{\prime}
$$

Some insights on the proof of Theorem 1

We wish to apply the positive commutator method to

$$
\frac{P}{\lambda}=S_{\lambda} P_{\lambda} S_{\lambda}^{-1}, \quad P_{\lambda}=g^{j k}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j} \partial_{k}+\lambda^{-\frac{1}{2}} b_{j}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j}
$$

Some insights on the proof of Theorem 1

We wish to apply the positive commutator method to

$$
\frac{P}{\lambda}=S_{\lambda} P_{\lambda} S_{\lambda}^{-1}, \quad P_{\lambda}=g^{j k}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j} \partial_{k}+\lambda^{-\frac{1}{2}} b_{j}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j}
$$

The operator P_{λ} has singular coefficients at 0 .

Some insights on the proof of Theorem 1

We wish to apply the positive commutator method to

$$
\frac{P}{\lambda}=S_{\lambda} P_{\lambda} S_{\lambda}^{-1}, \quad P_{\lambda}=g^{j k}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j} \partial_{k}+\lambda^{-\frac{1}{2}} b_{j}\left(\lambda^{-\frac{1}{2}} y\right) \partial_{j}
$$

The operator P_{λ} has singular coefficients at 0 . In fact, if $|y| \gtrsim 1$,

$$
\begin{aligned}
\left|\partial_{y}^{\alpha}\left(g^{j k}\left(\lambda^{-\frac{1}{2}} y\right)-\delta_{j k}\right)\right| & \lesssim \lambda^{-\frac{|\alpha|}{2}}\left\langle\lambda^{-\frac{1}{2}} y\right\rangle^{-\rho-|\alpha|} \\
& \lesssim \lambda^{-\frac{|\alpha|}{2}}\left|\lambda^{-\frac{1}{2}} y\right|^{-\rho-|\alpha|}=\lambda^{\frac{\rho}{2}}|y|^{-\rho-|\alpha|} \lesssim \lambda^{\frac{\rho}{2}}\langle y\rangle^{-\rho-|\alpha|}
\end{aligned}
$$

(similar estimates for $\lambda^{-\frac{1}{2}} b_{j}\left(\lambda^{-\frac{1}{2}} y\right)$)
Proposition 1 If $\zeta \in C^{\infty}\left(\mathbb{R}^{n}\right)$ vanishes near 0,

$$
\zeta\left(\lambda^{\frac{1}{2}} x\right)(P / \lambda+1)^{-1} \sim S_{\lambda} q_{\lambda}(x, D) S_{\lambda}^{-1}
$$

for some bounded family $\left(b_{\lambda}\right)_{\lambda \ll 1}$ of S^{-2}.

Some insights on the proof of Theorem 1

Assume for simplicity that $|g(x)| \equiv 1$. If $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash 0\right)$ eqals 1 near infinity, we set

$$
A_{\lambda}=(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)\left(\frac{x \cdot D+D \cdot x}{2}\right)(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)
$$

Some insights on the proof of Theorem 1

Assume for simplicity that $|g(x)| \equiv 1$. If $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash 0\right)$ eqals 1 near infinity, we set

$$
A_{\lambda}=(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)\left(\frac{x \cdot D+D \cdot x}{2}\right)(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)
$$

Then, by Proposition 1, there is a bounded family $B(\lambda)$ of bounded operators s.t.

$$
i\left[(P / \lambda), A_{\lambda}\right]=2(P / \lambda)+\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho} B(\lambda)(P / \lambda+1)
$$

Some insights on the proof of Theorem 1

Assume for simplicity that $|g(x)| \equiv 1$. If $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash 0\right)$ eqals 1 near infinity, we set

$$
A_{\lambda}=(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)\left(\frac{x \cdot D+D \cdot x}{2}\right)(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)
$$

Then, by Proposition 1, there is a bounded family $B(\lambda)$ of bounded operators s.t.

$$
i\left[(P / \lambda), A_{\lambda}\right]=2(P / \lambda)+\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho} B(\lambda)(P / \lambda+1)
$$

Proposition 2 As $\lambda \rightarrow 0$ and $\operatorname{supp}(\varphi) \rightarrow\{1\}$,

$$
\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\| \rightarrow 0
$$

By Proposition 2, for $\lambda \ll 1$ and φ supported close enough to 1 ,

$$
\varphi(P / \lambda) i[(P / \lambda), A] \varphi(P / \lambda) \geq \frac{3}{2} \varphi^{2}(P / \lambda)-C\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\|
$$

Some insights on the proof of Theorem 1
Assume for simplicity that $|g(x)| \equiv 1$. If $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash 0\right)$ eqals 1 near infinity, we set

$$
A_{\lambda}=(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)\left(\frac{x \cdot D+D \cdot x}{2}\right)(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)
$$

Then, by Proposition 1, there is a bounded family $B(\lambda)$ of bounded operators s.t.

$$
i\left[(P / \lambda), A_{\lambda}\right]=2(P / \lambda)+\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho} B(\lambda)(P / \lambda+1)
$$

Proposition 2 As $\lambda \rightarrow 0$ and $\operatorname{supp}(\varphi) \rightarrow\{1\}$,

$$
\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\| \rightarrow 0
$$

By Proposition 2, for $\lambda \ll 1$ and φ supported close enough to 1 ,

$$
\begin{aligned}
\varphi(P / \lambda) i[(P / \lambda), A] \varphi(P / \lambda) & \geq \frac{3}{2} \varphi^{2}(P / \lambda)-C\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\| \\
& \geq \frac{3}{2} \varphi^{2}(P / \lambda)-\frac{1}{2}
\end{aligned}
$$

Selecting ϕ such that $\phi \varphi=\phi$ and $\phi \equiv 1$ near 1 ,

$$
\phi(P / \lambda) i\left[(P / \lambda), A_{\lambda}\right] \phi(P / \lambda) \geq \phi(P / \lambda)\left(\frac{3}{2} \varphi^{2}(P / \lambda)-\frac{1}{2}\right) \phi(P / \lambda) \geq \phi^{2}(P / \lambda)
$$

Some insights on the proof of Theorem 1

Assume for simplicity that $|g(x)| \equiv 1$. If $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash 0\right)$ eqals 1 near infinity, we set

$$
A_{\lambda}=(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)\left(\frac{x \cdot D+D \cdot x}{2}\right)(1-\chi)\left(\lambda^{\frac{1}{2}} x\right)
$$

Then, by Proposition 1, there is a bounded family $B(\lambda)$ of bounded operators s.t.

$$
i\left[(P / \lambda), A_{\lambda}\right]=2(P / \lambda)+\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho} B(\lambda)(P / \lambda+1)
$$

Proposition 2 As $\lambda \rightarrow 0$ and $\operatorname{supp}(\varphi) \rightarrow\{1\}$,

$$
\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\| \rightarrow 0
$$

By Proposition 2, for $\lambda \ll 1$ and φ supported close enough to 1 ,

$$
\begin{aligned}
\varphi(P / \lambda) i[(P / \lambda), A] \varphi(P / \lambda) & \geq \frac{3}{2} \varphi^{2}(P / \lambda)-C\left\|\varphi(P / \lambda)\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-\rho}\right\| \\
& \geq \frac{3}{2} \varphi^{2}(P / \lambda)-\frac{1}{2}
\end{aligned}
$$

Selecting ϕ such that $\phi \varphi=\phi$ and $\phi \equiv 1$ near 1 ,

$$
\phi(P / \lambda) i\left[(P / \lambda), A_{\lambda}\right] \phi(P / \lambda) \geq \phi(P / \lambda)\left(\frac{3}{2} \varphi^{2}(P / \lambda)-\frac{1}{2}\right) \phi(P / \lambda) \geq \phi^{2}(P / \lambda)
$$

The proof of Proposition 2 uses the next lemma lemma, based on heat flow estimates.
Proposition 3 There exists $\delta>0$ such that for all $\varphi \in C_{0}^{\infty}(\mathbb{R})$

$$
\|\varphi(P / \lambda)-\varphi(-\Delta / \lambda)\|_{L^{2} \rightarrow L^{2}} \lesssim \varphi \lambda^{\delta}
$$

