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The equation

(NLW)

{
∂2

t u −∆u = |u|
4

N−2 u

~u�t=0 = (u0,u1) ∈ H = Ḣ1(RN)× L2(RN)

where u : [0,T [×RN → R, N ≥ 3.

Is is well-posed in H = Ḣ1 × L2

[Ginibre-Velo].
The energy

E(~u) =
1
2

∫
RN
|∇t ,xu(t)|2 − N − 2

2N

∫
RN
|u(t)|

2N
N−2

is conserved, where |∇t ,xu|2 = (∂tu)2 +
∑N

j=1(∂xj u)2.

Transformations: if u is a solution and λ > 0, t0 ∈ R, ε ∈ {±1}, so is

v(t , x) =
ε

λN/2−1 u
(

t − t0
λ

,
x − x0

λ

)
.

‖~v(t0)‖H = ‖~u(0)‖H, E(~v) = E(~u).
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[Ginibre-Velo].

The energy

E(~u) =
1
2

∫
RN
|∇t ,xu(t)|2 − N − 2

2N

∫
RN
|u(t)|

2N
N−2

is conserved, where |∇t ,xu|2 = (∂tu)2 +
∑N

j=1(∂xj u)2.

Transformations: if u is a solution and λ > 0, t0 ∈ R, ε ∈ {±1}, so is

v(t , x) =
ε

λN/2−1 u
(

t − t0
λ

,
x − x0

λ

)
.

‖~v(t0)‖H = ‖~u(0)‖H, E(~v) = E(~u).

Thomas Duyckaerts (Paris 13) Exterior energy bounds for wave equations Oct 3rd, 2018 4 / 20



The equation

(NLW)

{
∂2

t u −∆u = |u|
4

N−2 u

~u�t=0 = (u0,u1) ∈ H = Ḣ1(RN)× L2(RN)
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Travelling waves

Stationary solutions of (NLW):

(E) −∆Q = |Q|
4

N−2 Q, Q : RN → R, Q ∈ Ḣ1(RN).

Minimal energy nonzero solution of (E) (ground state):

W (x) =

(
1 +

|x |2

N(N − 2)

)1−N
2

(unique radial solution up to transformations).

∃ solutions of (E) with arbitrarily large energy: [W.Y. Ding 1986], [Del
Pino, Musso, Pacard, Pistoia 2013].

Solitary waves (p ∈ RN , |p| < 1): Qp(t , x) = Qp(0, x − tp), where

Qp(0, x) = Q

((
1√

1− p2
− 1

)
(p · x)p

p2 + x

)
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Type II blow-up solutions

Definition. u is a type II blow-up solution of (NLW) when the maximal
time of existence T+ of u is finite and

lim sup
t→T+

‖~u(t)‖H <∞.

Existence of solutions of the form:

~u(t) =

(
1

λ(t)
N−2

2

W
(
·

λ(t)

)
,0

)
+ (v0, v1), t → T+,

where (v0, v1) ∈ H et λ(t)� T+ − t , [Krieger Schlag Tataru 09, 14]
(N = 3) and also: [Hillairet Raphaël 12] (N = 4), [Jendrej 2015].

Open question: Type II solutions with more than one bubble, or other
bubbles than W . See: [Jendrej], [Martel, Merle] (global case) and also
[Côte, Zaag] (1D), [Côte, Martel] (KG).
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Soliton resolution conjecture for type II blow-up

Conjecture. Let u be a radial, type II blow-up solution of (NLW). Then
there exists J ≥ 1 and:

(v0, v1) ∈ H,
signs εj ∈ {±1}, j = 1 . . . J,
parameters λj(t), 0 < λ1(t)� λ2(t)� . . .� λJ(t)� T+ − t ,

such that:

~u(t) = (v0, v1) +
J∑

j=1

 εj

λ
N
2−1
j (t)

W
(

x
λj(t)

)
,0

+ ~w(t),

where: lim
t→T+

∥∥~w(t)
∥∥
H = 0.

In the nonradial case: possibly several blow-up points, more general
solitons (replace ±W by Qj

pj
), space translations allowed.
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Asymptotic behaviour for linear waves

Consider:

(LW)

{
∂2

t uL −∆uL = 0, x ∈ RN , t ∈ R
~uL�t=0 = (u0,u1) ∈ H = Ḣ1(RN)× L2(RN).

Then (see e.g. [Friedlander]) there exist G± ∈ L2(R× SN−1) such that:

lim
t→+∞

∫ +∞

0

∫
SN−1

∣∣∣r N−1
2 ∂r uL(t , rω)∓G±(r − t , ω)

∣∣∣2
+
∣∣∣r N−1

2 ∂tuL(t , rω) + G±(r − t , ω)
∣∣∣2 drdω = 0.

Furthermore (denoting /∂ the tangential derivative):

lim
t→+∞

∫
1
|x |2
|uL(t , x)|2 + |/∂uL(t , x)|2 + |uL(t , x)|

2N
N−2 dx = 0

(u0,u1) 7→ G+ and (u0,u1) 7→ G− are isometries between H and
L2(R× SN−1).
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Equirepartition of the energy

Theorem [TD, Kenig, Merle 2012]. Assume N is odd. Let uL be the
solution of the linear wave equation with data (u0,u1). Then∑

±
lim

t→±∞

∫
{|x |≥|t |}

|∇t ,xuL(t , x)|2 dx =

∫
RN
|∇t ,xuL(0, x)|2 dx .

More precisely:

if u1 = 0 then G+(η, ω) = (−1)
N+1

2 G+(−η,−ω).

if u0 = 0 then G+(η, ω) = (−1)
N−1

2 G+(−η,−ω),
which follows from a careful study of the explicit reprensentation of the
solution.
The lower bound (≥) does not hold in even dimension ([Côte, Kenig,
Schlag 2014]), even if a multiplicative constant is allowed.
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Nonradiative solution

Definition. A (global) solution u of (NLW) is nonradiative when∑
±

lim
t→±∞

∫
{|x |≥|t |}

|∇t ,xu(t , x)|2 dx = 0.

Solitary waves are nonradiative.

We look for rigidity theorems of the form: u nonradiative =⇒ u is a
solitary wave.

This is difficult: it implies in particular the nonexistence of pure
multisolitons (typically false for integrable equations). See [Martel
Merle 2017].
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Rigidity theorem for small data

Theorem [TD, Kenig, Merle 2012]. Assume N is odd. Then there
exists ε0 > 0 such that if u is a solution of (NLW) with:

‖(u0,u1)‖H < ε0,

then ∑
±

lim
t→±∞

∫
{|x |≥|t |}

|∇t ,xu(t , x)|2 dx ≥ 1
2

∫
RN
|∇t ,xu(0, x)|2 dx .

As a consequence, if u is a small, nonradiative solution, then u ≡ 0.

Corollary [TD, Kenig, Merle 2012] Soliton resolution for type II blow-up
solutions holds with the additional assumption:

lim sup
t→T+

‖~u(t)‖2H ≤ ‖W‖2Ḣ1 + ε2.

See works of [Krieger, Nakanishi, Schlag] for a complete description
of the dynamics close to the ground state.
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Improved exterior energy bound for radial solution

Let R > 0. Denote by HR the space of radial functions in
(Ḣ1 × L2)({r > R}), and π⊥R the orthogonal projection, in HR, on the
orthogonal of PR = span((1/r ,0)).

Proposition. Let uL be a radial solution of the linear wave equation, in
space dimension 3, with initial data (u0,u1). Then∑

±
lim

t→±∞

∫ +∞

R+|t |
(∂t ,r uL(t , r))2r2 dr = ‖π⊥R (u0,u1)‖2HR

.

Note that PR is the intersection of
⋃

k≥1 N
(
∆k)×⋃k≥1 N

(
∆k) and

HR.

Generalization to other odd dimension, with PR defined as above:
[Kenig, Lawrie, Baoping Liu, Schlag 2015]. Note that:

dim PR =
N − 1

2
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(Ḣ1 × L2)({r > R}), and π⊥R the orthogonal projection, in HR, on the
orthogonal of PR = span((1/r ,0)).

Proposition. Let uL be a radial solution of the linear wave equation, in
space dimension 3, with initial data (u0,u1). Then∑

±
lim

t→±∞

∫ +∞

R+|t |
(∂t ,r uL(t , r))2r2 dr = ‖π⊥R (u0,u1)‖2HR

.

Note that PR is the intersection of
⋃

k≥1 N
(
∆k)×⋃k≥1 N

(
∆k) and

HR.

Generalization to other odd dimension, with PR defined as above:
[Kenig, Lawrie, Baoping Liu, Schlag 2015]. Note that:

dim PR =
N − 1

2

Thomas Duyckaerts (Paris 13) Exterior energy bounds for wave equations Oct 3rd, 2018 14 / 20



Improved exterior energy bound for radial solution

Let R > 0. Denote by HR the space of radial functions in
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Rigidity theorem

Theorem. Assume N = 3. If u is a radial non radiative solution, then
u = 0 or there exist λ > 0, ι ∈ {±1} such that u(t , x) = ι

λ1/2 W
( x
λ

)
.

Recall W (x) = 1(
1+ |x|

2
3

) 1
2

, so that

ι

λ1/2 W
(x
λ

)
∼
√

3λ1/2

|x |
, |x | → ∞.

First step of the proof: ∃` ∈ R such that

lim
r→∞

ru0(r) = `.

“Corollary.”The soliton resolution conjecture holds for radial solutions
in dimension 3.
Difficulty in higher odd dimensions due to the higher dimension of PR!
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Outline

1 Energy-critical wave equation

2 Radiation terms and exterior energy bounds

3 Nonradiative solutions and rigidity theorems for critical wave
equations

4 Outgoing initial data
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Lower bound for well-prepared initial data

Lemma. Let γ ∈ (0,1). There exists ε = ε(γ) > 0 with the following
property. Let uL be a solution of (LW) with initial data (u0,u1) such that{

(u0,u1) ∈ Ḣ1 × L2 if N ≥ 3
|∇u0| ∈ L2,u1 ∈ L2 and u0(x) = u∞ for large |x | if N = 2

(where u∞ ∈ R) and:

‖(∇u0,u1)‖L2(Bc
1+ε∪B1−ε)

+ ‖/∂u0‖L2 + ‖∂r u0 + u1‖L2 ≤ ε‖(∇u0,u1)‖L2 .

(outgoing condition). Then, for all t ≥ 0,∫
|x |≥γ+t

|∇x ,tuL|2(x , t) dx ≥ γ‖(∇u0, u1)‖2L2 .

Application: soliton resolution up to a sequence of times for (NLW) [TD,
Jia, Kenig, Merle 2017]. Soliton resolution for small type II blow-up
solutions for wave maps. [TD, Jia, Kenig, Merle 2016], using [Grinis
2016].
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Wave maps

(WM)

∂
2
t u −∆u =

(
|∇u|2 − |∂tu|2

)
u, x ∈ R2

~u�t=0 = (u0,u1), u0 · u1 = 0, |u0| = 1.

u : [0,T [×R2 → S2.

Consider classical solutions: (u0,u1) C∞, u0 constant at infinity, u1
compactly sypported.

The energy is conserved

EM(~u) =
1
2

∫
R2
|∇xu(t)|2 +

1
2

∫
R2
|∂tu(t)|2.

Change of scale: uλ(t , x) = u
( t
λ ,

x
λ

)
.

Explicit ground state S (degree one co-rotational harmonic maps).
Lorentz transform of S: Sp, |p| < 1.
Blow-up solutions [Krieger, Schlag and Tataru 2008], [Raphaël,
Rodnianski 2012], [Jendrej 2016].
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Well prepared initial data for wave maps

Theorem. Let γ ∈ (0,1). Then there exists ε = ε(γ) > 0 with the
following property. Let u be a classical solution of (WM) with initial
data (u0,u1) such that

EM(u0,u1) ≤ ε

and

‖(∇u0,u1)‖L2(Bc
1+ε∪B1−ε)

+ ‖/∂u0‖L2 + ‖∂r u0 + u1‖L2 ≤ ε‖(∇u0,u1)‖L2 .

Then for all t ≥ 0,∫
|x |≥γ+t

|∇x ,tu|2(t , x) dx ≥ γ‖(∇u0, u1)‖2L2 .
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Small type II blow-up solutions for wave maps

Theorem. Let u be a classical solution of (WM) such that
EM(~u(0)) < EM(S,0) + ε20, blowing up in finite time T+ at x = 0. Then
there exists p ∈ R2 such that |p| � 1, x(t) ∈ R2, λ(t) > 0 with

lim
t→T+

x(t)
T+ − t

= p, lim
t→T+

λ(t)
T+ − t

= 0,

and (v0, v1) ∈ H ∩ C∞(R2\{0}) with (v0 − u∞, v1) compactly
supported, such that

(i) inf

{∥∥~u(t)− (v0, v1)− (Qp, ∂tQp)
∥∥
H : Qp ∈Mp

}
−→
t→T+

0,

(ii)
∥∥∥∥(∇u(t), ∂tu(t))− (∇v0, v1)

∥∥∥∥
L2(R2\Bλ(t)(x(t)))

−→
t→T+

0,

where Bλ(t)(x(t)) =
{

x ∈ R2 : |x − x(t)| < λ(t)
}

,Mp is the manifold
of all transformations of Sp (by the group spanned by space
translation, scaling, and S2 isometries).
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