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Plan

1. Introduction

2. What happens for (NLS) posed on Rd and Mk ?

3. What happens in “mixed” settings ?

4. Same questions for the Klein-Gordon equation.
# Small data theory.
# Some hints for large data.

In this talk, total dimension = 3.
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The equations

(NLS): i∂tu + ∆Xu = ±|u|αu ; u(0, .) = u0 ∈ H1(X ),

(NLKG):

{
∂ttu −∆Xu + u = ±|u|αu,
(u(0, .), ∂tu(0, .)) = (u0, u1) ∈ H1(X )× L2(X ).

Question 1: According to the choices of X and α, do we have global
solutions ?

Question 2: For the global solutions, what is the behaviour when
|t| → +∞ ?

Aim: compare solutions to (NLS) or (NLKG) with “linear” solutions.
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The Schrödinger equation on R3

4

3
≤ α ≤ 4

i∂tu + ∆Rdu = ±κ|u|αu ; u(0, .) = u0 ∈ H1(R3),

Study of the equation thanks to Strichartz estimates: Consider
admissible pairs: 0 ≤ 2/qj = 3/rj − 3/2 < 1. Then

1. ‖e it∆f ‖Lqt Lrx ≤ C (r)‖f ‖L2
x
,

2. ‖e it∆ ∗t f ‖Lq1
t L

r1
x
≤ C (r1, r2)‖f ‖

L
q′2
t L

r′2
x
.

“Symptoms of dispersive nature of the equation”.

Used to prove local existence with fixed point argument.

Also used to prove “scattering”.
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(∗∗) lim
|t|→±∞

‖u(t)− e it∆u±‖H1 .

Every u0 in H1 gives a unique global solution u to (NLS), with

u,∇u ∈ C (R, L2) ∩ Lq(R, Lr ), for some (q, r).

Moreover

Asymptotic completeness: For all u0 ∈ H1, one can produce a u± ∈ H1

s.t. (∗∗) is satisfied.

Existence of the wave operator: For all u± ∈ H1, one can associate a
solution u(t) to (NLS), satisfying (∗∗).
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(∗∗) lim
|t|→±∞

‖u(t)− e it∆u±‖H1

is equivalent to
(∗∗) lim

|t|→±∞
‖e−it∆u(t)− u±‖H1 ,

and e−it∆u(t) has to converge in H1.

Duhamel →

u(t) = e it∆u0 − iκ

∫ t

0
e i(t−s)∆|u|αu(s) ds

e−it∆u(t) = u0 − iκ

∫ t

0
e−is∆|u|αu(s) ds.

H1−scattering if and only if κ

∫ ∞
0

e−is∆|u|αu(s) ds converges in H1.

One needs a bound of |u|αu in some functional space; global-in-time
Strichartz estimates are crucial !
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On (Mk , g)

See works done by J. Bourgain, N. Burq-P.Gérard-N.Tzvetkov...

Ex.: Mk is the flat torus, the sphere...

i∂tu + ∆Mku = κ|u|αu ; u(0, ·) = u0 ∈ H1(Mk);

Basis of L2(Mk) given by (Φj(y))j∈N, −∆Mk Φj = λjΦj .

Existence of linear periodic solutions s.t.: for all K compact subset,
‖1Kulin(t)‖L2 = C , whereas ; lim

|t|→∞
‖1Kulin(t)‖L2 = 0 on R3.

One cannot expect scattering.
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On a product space

What we expect for d + k = 3,

i∂tu + ∆Rd×Mku = κ|u|αu ; u(0, .) = u0 ∈ H1(Rd ×Mk);

Natural restrictions on α:

α • • ••0 2 4
4
3

scattering on R3 scattering on R×M2

scattering on R2 ×M1

Can we prove Strichartz estimates estimates for
i∂tu + ∆Rd×Mku = F ; u(0, ·) = u0(·) ?
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Idea of proof
Key argument: Use of the L2(Mk) basis, with −∆Mk Φk = λkΦk .

Then: u(t, x , y) =
∑

k uk(t, x)Φk(y).

each uk is solution to (NLS) posed on Rd :

i∂tuk + ∆Rduk − λkuk = Fk , uk(0, ·) = uk,0(·)

Consequence: Strichartz for each uk since e it(∆−λk ) = e−itλk e it∆:

‖uk‖Lq1
t L

r1
x
≤ C

[
‖uk,0‖L2 + ‖Fk‖

L
q′2
t L

r′2
x

]
.

Summing in k (`2
k−norm), one has:

‖u‖Lq1
t L

r1
x L2

y
≤ C

[
‖u0‖L2

x,y
+ ‖F‖

L
q′2
t L

r′2
x L2

y

]
.
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Theorem

Consider one of the following situations

(1)R2 ×M1 and α ∈ [2, 4],Xdata = H1,XGWP = Lqt L
r
xH

1
2

+
y

(2)R× T2 and α = 4,Xdata = H1,XGWP = ”modified atomic space”

(3)R×M2 and α = 4,Xdata = L2
xH

1+
y ,XGWP = Lqt L

q
xH

1+
y

Then, there exists δ > 0 s.t. every data u0 satisfying ‖u0‖Xdata
< δ

produces a unique global solution in u ∈ C 0(R,H1) ∩ XGWP that scatters
to a linear solution in H1.

(Tzvetkov-Visciglia ’11, Hani-Pausader ’14, Tarulli ’16).

Remarques:
• More general results : large data scattering available on Rd ×M1

• Several works on product spaces that will not be described here (GWP,
modified scattering...)
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(NLKG)

(NLKG):

{
∂ttu −∆Xu + u = ±|u|αu,
(u(0, .), ∂tu(0, .)) = (u0, u1) ∈ H1(X )× L2(X ).

.

Same role of parameter α.

I X = Rd → P.Brenner, H.Pecher, C.Morawetz,
C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global
existence + scattering (use of smallness of a Strichartz norm)

I X =Mk → global existence (J.-M. Delort,
J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.

I X = Rd ×Mk → difficulties when one try to apply the method used
for (NLS).
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The difficulties
I Order 2 in time: one need to work with U =

(
u
∂tu

)
, in H1 × L2.

I The propagator is unitary on H1 × L2, but not scaling invariant

S(t) =

 cos
(
t ·
√

1−∆
) sin

(
t ·
√

1−∆
)

√
1−∆

− sin
(
t ·
√

1−∆
)
.
(√

1−∆
)

cos
(
t ·
√

1−∆
)


We want to prove

lim
|t|→±∞

∥∥∥∥U(t)− S(t)

(
f±
g±

)∥∥∥∥
H1×L2

= 0.

I Strichartz estimates on R3 exist but are stated in Besov spaces:
0 ≤ 2/qj = 3/rj − 3/2 < 1, sj = sj(rj)

‖u‖Lq1Bs
r1,2
≤ C (r1, r2)

(
‖u0‖H1 + ‖u1‖L2 + ‖F‖

Lp
′
1B

1−sj

r′
2

2

)
.
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Idea of proof
We still work on the basis of L2(Mk) given by −∆Mk Φk = λkΦk :

u(t, x , y) =
∑

k uk(t, x)Φk(y).

Each uk is solution to

∂ttuk −∆Rduk + uk + λkuk = Fk , uk(0, ·) = uk,0(·), ∂tuk(0, ·) = uk,1(·)
Problems: estimates will depend on λk . Scaling type argument needed
to quantify that dependence → homogeneous spaces are needed:
embeddings from Besov to Lebesgue.

For eack k

C0(λk)‖uk‖Lq1
t L

r1
x
≤ C

[√
1 + λk‖uk,0‖L2 + ‖uk,0‖Ḣ1 + ‖uk,1‖L2 + ‖Fk‖L1

tL
2
x

]
.

Consequence: for some particular pairs, such that the embeddings are
valid,

‖u‖Lq1
t L

r1
x,y
≤‖u‖Lq1

t L
r1
x Hγy
≤ C

[
‖u0‖H1 + ‖u1‖L2 + ‖F‖L1

tL
2
x,y

]
.
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Theorem (H’-Visciglia ’17)

Consider one of the following situations

R×M2 and α = 4,

R2 ×M1 and α ∈ [2, 4]

then there exists δ > 0 s.t. any data (u0, u1) with ‖u0‖H1
x,y

+ ‖u1‖L2
x,y
< δ

produces a unique global solution

u ∈ C 0(R,H1) ∩ C 1(R, L2) ∩ Lα+1(R, L2α+2).

Moreover, those solutions scatter to a linear solution in H1.

General statement k = 1, 2 and d + k ∈ [3, 6], and 4
d ≤ α ≤

4
d+k−2 .
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Scattering follows from ‖u‖Lα+1
t L2α+2

x,y
<∞:

U(t) = S(t)

(
f
g

)
+

∫ t

0
S(t − s)

(
0

±|u|αu

)
ds

V (t) = S(−t)U(t) =

(
f
g

)
+

∫ t

0
S(−s)

(
0

±|u|αu

)
ds.

V (t) exists/has some sense if it converges in H1 × L2. We prove that
lim

t,τ→∞
‖V (t)− V (τ)‖H1×L2 = 0:

‖V (t)− V (τ)‖H1×L2 ≤ C

∫ τ

t

∥∥∥∥( 0
±|u|αu ds

)∥∥∥∥
H1×L2

ds

≤ C

∫ τ

t
‖ |u|αu‖L2ds

≤ C‖u‖α+1
Lα+1([t,τ ],L2α+2)

which tends to zero as t, τ tend to infinity.
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which tends to zero as t, τ tend to infinity.
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What about large data for NLKG ? (with L. Forcella - EPFL, Lausanne)
“simpler” case: defocusing, H1−subcritical α.

Try to exploit the “flat” variables carrying the dispersive behaviour.
Use of concentration-compactness method (“à la Kenig-Merle”). Global
existence is obtained with classical fixed point argument and conservation
laws.

Theorem, from [Forcella-H. ’17]

Assume d = 1 and α > 4 or 2 ≤ d ≤ 4 and 4/d < α < 4/(d − 1).
Let u ∈ C (R,H1) ∩ C 1(R; L2) ∩ Lα+1(R; L2(α+1)) be the unique global
solution to (NLKG): then for t → ±∞ there exist (f ±, g±) ∈ H1 × L2

such that

lim
t→±∞

‖u(t, x)− u±(t, x)‖H1 + ‖∂tu(t, x)− ∂tu±(t, x)‖L2 = 0,

where u±(t, x , y) ∈ H1(Rd × T)× L2(Rd × T) are the corresponding
solutions to (LKG) with initial data (f ±, g±).
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Steps

Is detailed in [Nakanishi-Schlag ’11] for pure euclidean case.

I Prove that for ‖u0‖H1 < E0 small enough, H1−scattering holds.

I Assume there is no H1−scattering for solutions above some critical
energy Ec ≥ E0. For those solutions ‖u‖Lα+1

t L2α+2
x,y

= +∞.

I Build such critical element with profile decomposition and try to
understand its particular properties (compactness of trajectory).
Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag,

Banica-Visciglia...

I Exploit those properties, together with adapted “Morawetz estimates”
instead of Virial estimates, to obtain a contradiction and deduce that
Ec = +∞.
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Profile decomposition theorem

General scheme from [Banica-Visciglia ’16]

1. Any general term of a “bounded” sequence −→un = (un, ∂tun) of solutions
to (LKG) can be written as a sum of k linear “profiles” + a small
remainder,for any choice of k > 1. Profiles are concentrated in sequence
of points sufficiently uncorrelated and “flying to infinity”.

2. The remainder can be estimated in some good Strichartz norm.

3. Pythagorician expansion of “energy” of −→un holds.
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General scheme from [Banica-Visciglia ’16]

1. Any general term of a “bounded” sequence −→un = (un, ∂tun) of
solutions to (LKG) can be written as a sum of k linear “profiles” + a
small remainder,for any choice of k > 1. Profiles are concentrated in
sequence of points sufficiently uncorrelated and “flying to infinity”.

2. The remainder can be estimated in some good Strichartz norm.

3. Pythagorician expansion of “energy” of −→un holds.

−→un(t, x , y) =
∑

1≤j<k

−→v j(t − t jn, x − x jn, y) +
−→
R k

n(t, x , y),

where ∀j 6= k , (|tkn − t jn|+ |xkn − x jn|)
n→+∞−−−−→ +∞.

Moreover, the space-time translation sequence satisfies:

either (tn, xn) = (0, 0) or (tn, |xn|)→ (±∞,+∞).
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1. Any general term of a “bounded” sequence −→un = (un, ∂tun) of solutions
to (LKG) can be written as a sum of k linear “profiles” + a small
remainder,for any choice of k > 1. Profiles are concentrated in sequence
of points sufficiently uncorrelated and “flying to infinity”.

2. The remainder can be estimated in some good Strichartz norm.

3. Pythagorician expansion of “energy” of −→un holds.

For any q ∈ (2, 2∗),

lim
k→±∞

lim sup
n→±∞

‖Rk
n ‖L∞Lq = 0

interpolation−−−−−−−−→ lim
k→±∞

lim sup
n→±∞

‖Rk
n ‖Lα+1L2α+2 = 0
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General scheme from [Banica-Visciglia ’16]

1. Any general term of a “bounded” sequence −→un = (un, ∂tun) of solutions
to (LKG) can be written as a sum of k linear “profiles” + a small
remainder,for any choice of k > 1. Profiles are concentrated in sequence
of points sufficiently uncorrelated and “flying to infinity”.

2. The remainder can be estimated in some good Strichartz norm.

3. Pythagorician expansion of “energy” of −→un holds.

As n→ +∞,

‖−→un(0, x , y)‖2
H1×L2 =

∑
1≤j<k

‖
−→
v jn‖2

H1×L2 + ‖
−→
Rk
n ‖2

H1×L2 + o(1),

and

‖un(0, x , y)‖α+2
Lα+2 =

∑
1≤j<k

‖v jn(0, x , y)‖α+2
Lα+2 + ‖Rk

n ‖α+2
Lα+2 + o(1).
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Construction of minimal element

Aim: Construct a non-trivial minimal global non-scattering solution with
some compactness property.
Critical energy:

Ec = sup
{
E > 0|(f , g) ∈ H1 × L2 and E (f , g) < E

⇒ u(f , g)(t) ∈ Lα+1L2(α+1) < +∞
}

Theorem from [Forcella-H. ’17]

There exists an initial datum (fc , gc) ∈ H1 × L2 such that the
corresponding solution uc(t) to (NLKG) is global and
‖uc‖Lα+1L2α+2 = +∞. Moreover there exists a path x(t) ∈ Rd such that
{uc(t, x − x(t), y), ∂tuc(t, x − x(t), y), t ∈ R+} is relatively compact in
H1 × L2.

How ? Use Profile decomposition theorem and some technical lemmas.
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Cooking a contradiction

Several technical results are needed.
Ingredient one.
Ingredient two.
Ingredient three.
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Cooking a contradiction

Several technical results are needed.
Ingredient one.

Finite propagation speed (FPS)

Let u be the solution to (NLKG) with Cauchy datum (f , g) vanishing on
B(x0, r)c × T, for some r > 0. Then −→u (t) vanishes on

K (x0, r) := {t ≥ 0, x ∈ B(x0, r + t)c , y ∈ T} .

Ingredient two.
Ingredient three.
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Cooking a contradiction

Several technical results are needed.
Ingredient one. (FPS)
Ingredient two.

”Energy concentration” given by GWP + relatively compactness

Let u(t) be a nontrivial solution to (NLKG) such that
{u(t, x − x(t), y), ∂tu(t, x − x(t), y)}t ∈ R is relatively compact in
H1 × L2. Then for any A > 0 there exist C (A) > 0 and R = R(A) > 0
such that

sup
t

∫ t+A

t

∫
T

∫
|x−x(t)|≤R

|u|α+2dxdyds ≥ C (A).

As a corollary, we also obtain a lower bound for |u|2 instead of |u|α+2.

Ingredient three.
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Cooking a contradiction

Several technical results are needed.
Ingredient one. (FPS)
Ingredient two. Energy concentration
Ingredient three.

1d−Morawetz estimates (inspired by Nakanishi)

“Multiply the equation with some quantity M and integrate everything in
some time-space region. Then, handle each term to find a bound”∫

R

∫
Rd×T

min(|u|2, |u|α+2)

〈t〉 log(|t|+ 2) log(max(|x1| − t, 2))
≤ C .

20/22



From Morawetz:

C ≥
∫ T

2

∫
T

∫
|x−x(t)|≤R

min(|u|2, |u|α+2)

〈t〉 log(|t|+ 2) log(max(|x1| − t, 2))

(FPS) → |x | ≤ |x − x(t)|+ |x(t)− x(0)|+ |x(0)| ≤ R + t + c0 + c1.

Concentration

As T →∞, the last term is equivalent to a divergent term

∫ ∞
2

1

t log(t)
dt.

CONTRADICTION.

Conclusion: Ec = +∞, which means that all solutions scatter.
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THANK YOU
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