Scattering for Nonlinear Klein-Gordon equations posed on product spaces.

Lysianne Hari
LMB, Université Bourgogne Franche Comté
joint work with N. Visciglia (Unipi Pisa) and L. Forcella (EPFL Lausanne)

Nonlinear Waveguides and Related Topics Toulouse, October, 1-3, 2018

1. Introduction
2. What happens for (NLS) posed on \mathbf{R}^{d} and \mathcal{M}^{k} ?
3. What happens in "mixed" settings ?
4. Same questions for the Klein-Gordon equation.
\rightarrow Small data theory.
\rightarrow Some hints for large data.

In this talk, total dimension $=3$.

The equations

(NLS): $\quad i \partial_{t} u+\Delta_{X} u= \pm|u|^{\alpha} u \quad ; \quad u(0,)=.u_{0} \in H^{1}(X)$,
(NLKG): $\left\{\begin{array}{l}\partial_{t t} u-\Delta_{X} u+u= \pm|u|^{\alpha} u, \\ \left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X) .\end{array}\right.$
Question 1: According to the choices of X and α, do we have global solutions ?

Question 2: For the global solutions, what is the behaviour when
\square
Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The equations

(NLS): $\quad i \partial_{t} u+\Delta_{X} u= \pm|u|^{\alpha} u \quad ; \quad u(0,)=.u_{0} \in H^{1}(X)$,

$$
(\mathrm{NLKG}):\left\{\begin{array}{l}
\partial_{t t} u-\Delta_{X} u+u= \pm|u|^{\alpha} u \\
\left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X)
\end{array}\right.
$$

Question 1: According to the choices of X and α, do we have global solutions?

Question 2: For the global solutions, what is the behaviour when

Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The equations

$$
\begin{gathered}
\text { (NLS): } \quad i \partial_{t} u+\Delta_{x} u= \pm|u|^{\alpha} u ; u(0, .)=u_{0} \in H^{1}(X), \\
\text { (NLKG): }\left\{\begin{array}{l}
\partial_{t t} u-\Delta_{X} u+u= \pm|u|^{\alpha} u, \\
\left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X) .
\end{array}\right.
\end{gathered}
$$

Question 1: According to the choices of X and α, do we have global solutions ?

Question 2: For the global solutions, what is the behaviour when $|t| \rightarrow+\infty$?

Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The Schrödinger equation on \mathbf{R}^{3}

$\frac{4}{3} \leq \alpha \leq 4$

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d}} u= \pm \kappa|u|^{\alpha} u \quad ; \quad u(0, .)=u_{0} \in H^{1}\left(\mathbf{R}^{3}\right)
$$

Study of the equation thanks to Strichartz estimates: Consider admissible pairs: $0 \leq 2 / q_{j}=3 / r_{j}-3 / 2<1$. Then

1. $\left\|e^{i t \Delta} f\right\|_{L_{t}^{q} L_{x}^{L}} \leq C(r)\|f\|_{L_{x}^{2}}$,
2. $\left\|e^{i t \Delta} *_{t} f\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left(r_{1}, r_{2}\right)\|f\|_{L_{t}^{q^{\prime} 2 L_{x}^{\prime} r^{\prime}}}$.
"Symptoms of dispersive nature of the equation".
Used to prove local existence with fixed point argument.
Also used to prove "scattering"

The Schrödinger equation on \mathbf{R}^{3}

$\frac{4}{3} \leq \alpha \leq 4$

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d}} u= \pm \kappa|u|^{\alpha} u \quad ; \quad u(0, .)=u_{0} \in H^{1}\left(\mathbf{R}^{3}\right)
$$

Study of the equation thanks to Strichartz estimates: Consider admissible pairs: $0 \leq 2 / q_{j}=3 / r_{j}-3 / 2<1$. Then

1. $\left\|e^{i t \Delta} f\right\|_{L_{t}^{q} L_{x}^{L}} \leq C(r)\|f\|_{L_{x}^{2}}$,
2. $\left\|e^{i t \Delta} *_{t} f\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left(r_{1}, r_{2}\right)\|f\|_{L_{t}^{q^{\prime} 2 L_{x}^{\prime} r^{\prime}}}$.
"Symptoms of dispersive nature of the equation".
Used to prove local existence with fixed point argument.
Also used to prove "scattering'

The Schrödinger equation on \mathbf{R}^{3}

$\frac{4}{3} \leq \alpha \leq 4$

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d}} u= \pm \kappa|u|^{\alpha} u \quad ; \quad u(0, .)=u_{0} \in H^{1}\left(\mathbf{R}^{3}\right)
$$

Study of the equation thanks to Strichartz estimates: Consider admissible pairs: $0 \leq 2 / q_{j}=3 / r_{j}-3 / 2<1$. Then

1. $\left\|e^{i t \Delta} f\right\|_{L_{t}^{q} L_{x}^{L}} \leq C(r)\|f\|_{L_{x}^{2}}$,
2. $\left\|e^{i t \Delta} *_{t} f\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left(r_{1}, r_{2}\right)\|f\|_{L_{t}^{q^{\prime} 2 L_{x}^{r^{\prime}} 2}}$.
"Symptoms of dispersive nature of the equation".
Used to prove local existence with fixed point argument.
Also used to prove "scattering".

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}} .
$$

Every u_{0} in H^{1} gives a unique global solution u to (NLS), with

$$
u, \nabla u \in C\left(\mathbf{R}, L^{2}\right) \cap L^{q}\left(\mathbf{R}, L^{r}\right), \quad \text { for some }(q, r)
$$

Moreover
Asymptotic completeness: For all $u_{0} \in H^{1}$, one can produce a $u_{ \pm} \in H^{1}$ s.t. $(* *)$ is satisfied.

Existence of the wave operator: For all $u_{ \pm} \in H^{1}$, one can associate a solution $u(t)$ to (NLS), satisfying ($* *$).

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}} .
$$

Every u_{0} in H^{1} gives a unique global solution u to (NLS), with

$$
u, \nabla u \in C\left(R, L^{2}\right) \cap L^{q}(R, L), \quad \text { for some }(q, r)
$$

Moreover

Asymptotic completeness: For all $u_{0} \in H^{1}$, one can produce a $u_{ \pm} \in H^{1}$ s.t. $(* *)$ is satisfied.

Existence of the wave operator: For all $u_{ \pm} \in H^{1}$, one can associate a solution $u(t)$ to (NLS), satisfying ($* *$).

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}}
$$

is equivalent to

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|e^{-i t \Delta} u(t)-u_{ \pm}\right\|_{H^{1}},
$$

and $e^{-i t \Delta} u(t)$ has to converge in H^{1}.
Duhamel \rightarrow

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}}
$$

is equivalent to

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|e^{-i t \Delta} u(t)-u_{ \pm}\right\|_{H^{1}}
$$

and $e^{-i t \Delta} u(t)$ has to converge in H^{1}.
Duhamel \rightarrow

$$
\begin{aligned}
u(t) & =e^{i t \Delta} u_{0}-i \kappa \int_{0}^{t} e^{i(t-s) \Delta}|u|^{\alpha} u(s) d s \\
e^{-i t \Delta} u(t) & =u_{0}-i \kappa \int_{0}^{t} e^{-i s \Delta}|u|^{\alpha} u(s) d s
\end{aligned}
$$

H^{1}-scattering if and only if $\kappa \int_{0}^{\infty} e^{-i s \Delta}|u|^{\alpha} u(s) d s$ converges in H^{1}.

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}}
$$

is equivalent to

$$
(* *) \lim _{|t| \rightarrow \pm \infty}\left\|e^{-i t \Delta} u(t)-u_{ \pm}\right\|_{H^{1}}
$$

and $e^{-i t \Delta} u(t)$ has to converge in H^{1}.
Duhamel \rightarrow

$$
\begin{aligned}
u(t) & =e^{i t \Delta} u_{0}-i \kappa \int_{0}^{t} e^{i(t-s) \Delta}|u|^{\alpha} u(s) d s \\
e^{-i t \Delta} u(t) & =u_{0}-i \kappa \int_{0}^{t} e^{-i s \Delta}|u|^{\alpha} u(s) d s
\end{aligned}
$$

H^{1}-scattering if and only if $\kappa \int_{0}^{\infty} e^{-i s \Delta}|u|^{\alpha} u(s) d s$ converges in H^{1}.
One needs a bound of $|u|^{\alpha} u$ in some functional space; global-in-time Strichartz estimates are crucial !

On $\left(\mathcal{M}^{k}, g\right)$

See works done by J. Bourgain, N. Burq-P.Gérard-N.Tzvetkov... Ex.: \mathcal{M}^{k} is the flat torus, the sphere...

$$
i \partial_{t} u+\Delta_{\mathcal{M}^{k}} u=\kappa|u|^{\alpha} u \quad ; \quad u(0, \cdot)=u_{0} \in H^{1}\left(\mathcal{M}^{k}\right) ;
$$

Basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $\left(\Phi_{j}(y)\right)_{j \in \mathbf{N}}, \quad-\Delta_{\mathcal{M}^{k}} \Phi_{j}=\lambda_{j} \Phi_{j}$.
Existence of linear periodic solutions s.t.: for all K compact subset, $\left\|1_{K} u_{\text {lin }}(t)\right\|_{L^{2}}=C$, whereas ; $\quad \lim \left\|1_{K} u_{\text {lin }}(t)\right\|_{L^{2}}=0$ on \mathbf{R}^{3}

One cannot expect scattering

On $\left(\mathcal{M}^{k}, g\right)$

See works done by J. Bourgain, N. Burq-P.Gérard-N.Tzvetkov... Ex.: \mathcal{M}^{k} is the flat torus, the sphere...

$$
i \partial_{t} u+\Delta_{\mathcal{M}^{k}} u=\kappa|u|^{\alpha} u \quad ; \quad u(0, \cdot)=u_{0} \in H^{1}\left(\mathcal{M}^{k}\right)
$$

Basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $\left(\Phi_{j}(y)\right)_{j \in \mathbf{N}}, \quad-\Delta_{\mathcal{M}^{k}} \Phi_{j}=\lambda_{j} \Phi_{j}$.
Existence of linear periodic solutions s.t.: for all K compact subset, $\left\|1_{K} u_{\text {lin }}(t)\right\|_{L^{2}}=C$, whereas ; $\lim _{|t| \rightarrow \infty}\left\|1_{K} u_{\text {lin }}(t)\right\|_{L^{2}}=0$ on \mathbf{R}^{3}.

One cannot expect scattering.

On a product space

What we expect for $d+k=3$,

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d} \times \mathcal{M}^{k}} u=\kappa|u|^{\alpha} u \quad ; \quad u(0, .)=u_{0} \in H^{1}\left(\mathbf{R}^{d} \times \mathcal{M}^{k}\right) ;
$$

Natural restrictions on α :

Can we prove Strichartz estimates estimates for
$i \partial_{t} u+\Delta_{\mathbf{R}^{d} \times \mathcal{M}^{k}} u=F \quad ; \quad u(0, \cdot)=u_{0}(\cdot) ?$

On a product space

What we expect for $d+k=3$,

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d} \times \mathcal{M}^{k}} u=\kappa|u|^{\alpha} u \quad ; \quad u(0, .)=u_{0} \in H^{1}\left(\mathbf{R}^{d} \times \mathcal{M}^{k}\right) ;
$$

Natural restrictions on α :

Can we prove Strichartz estimates estimates for

$$
i \partial_{t} u+\Delta_{\mathbf{R}^{d} \times \mathcal{M}^{k}} u=F \quad ; \quad u(0, \cdot)=u_{0}(\cdot) ?
$$

Idea of proof

Key argument: Use of the $L^{2}\left(\mathcal{M}^{k}\right)$ basis, with $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$.
Then:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

each u_{k} is solution to (NLS) posed on \mathbf{R}^{d} :

Consequence: Strichartz for each u_{k} since $e^{i t\left(\Delta-\lambda_{k}\right)}=e^{-i t \lambda_{k}} e^{i t \Delta}$:

Summing in $k\left(\ell_{k}^{2}-\right.$ norm $)$, one has:

Idea of proof

Key argument: Use of the $L^{2}\left(\mathcal{M}^{k}\right)$ basis, with $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$.
Then:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

each u_{k} is solution to (NLS) posed on \mathbf{R}^{d} :

$$
i \partial_{t} u_{k}+\Delta_{\mathbf{R}^{d}} u_{k}-\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot)
$$

Consequence: Strichartz for each u_{k} since $e^{i t\left(\Delta-\lambda_{k}\right)}=e^{-i t \lambda_{k}} e^{i t \Delta}$:

$$
\left\|u_{k}\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left[\left\|u_{k, 0}\right\|_{L^{2}}+\left\|F_{k}\right\|_{L_{t}^{q^{\prime}} L_{x}^{\prime^{\prime}}}\right] .
$$

Summing in $k\left(\ell_{k}^{2}-\right.$ norm $)$, one has:

Idea of proof

Key argument: Use of the $L^{2}\left(\mathcal{M}^{k}\right)$ basis, with $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$.
Then:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

each u_{k} is solution to (NLS) posed on \mathbf{R}^{d} :

$$
i \partial_{t} u_{k}+\Delta_{\mathbf{R}^{d}} u_{k}-\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot)
$$

Consequence: Strichartz for each u_{k} since $e^{i t\left(\Delta-\lambda_{k}\right)}=e^{-i t \lambda_{k}} e^{i t \Delta}$:

$$
\left\|u_{k}\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left[\left\|u_{k, 0}\right\|_{L^{2}}+\left\|F_{k}\right\|_{L_{t}^{q^{\prime} 2} L_{x}^{L^{\prime}}}\right] .
$$

Summing in $k\left(\ell_{k}^{2}-\right.$ norm $)$, one has:

$$
\|u\|_{L_{t}^{q_{1}} L_{x}^{r_{1}} L_{y}^{2}} \leq C\left[\left\|u_{0}\right\|_{L_{x, y}^{2}}+\|F\|_{L_{t}^{q^{\prime} 2} L_{x}^{r^{\prime} 2} L_{y}^{2}}\right]
$$

Theorem

Consider one of the following situations

$$
\begin{aligned}
& \text { (1) } \mathbf{R}^{2} \times \mathcal{M}^{1} \text { and } \alpha \in[2,4], X_{\text {data }}=H^{1}, X_{G W P}=L_{t}^{q} L_{x}^{r} H_{y}^{\frac{1}{2}+} \\
& \text { (2) } \mathbf{R} \times \mathbb{T}^{2} \text { and } \alpha=4, X_{\text {data }}=H^{1}, X_{G W P}=" \text { modified atomic space" } \\
& \text { (3) } \mathbf{R} \times \mathcal{M}^{2} \text { and } \alpha=4, X_{\text {data }}=L_{x}^{2} H_{y}^{1+}, X_{G W P}=L_{t}^{q} L_{x}^{q} H_{y}^{1+}
\end{aligned}
$$

Then, there exists $\delta>0$ s.t. every data u_{0} satisfying $\left\|u_{0}\right\|_{X_{d a t a}}<\delta$ produces a unique global solution in $u \in C^{0}\left(\mathbf{R}, H^{1}\right) \cap X_{G W P}$ that scatters to a linear solution in H^{1}.
(Tzvetkov-Visciglia '11, Hani-Pausader '14, Tarulli '16).

Remarques:

- More general results : large data scattering available on $\mathbf{R}^{d} \times \mathcal{M}^{1}$
- Several works on product spaces that will not be described here (GWP, modified scattering...)
$(\mathrm{NLKG}):\left\{\begin{array}{l}\partial_{t t} u-\Delta_{X} u+u= \pm|u|^{\alpha} u, \\ \left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X) .\end{array}\right.$
Same role of parameter α.
- $X=\mathbf{R}^{d} \rightarrow$ P.Brenner, H.Pecher, C.Morawetz,
C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- $X=\mathcal{M}^{k} \rightarrow$ global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- $X=\mathrm{R}^{d} \times \mathcal{M}^{k} \rightarrow$ difficulties when one try to apply the method used for (NLS).

(NLKG)

$$
(\mathrm{NLKG}):\left\{\begin{array}{l}
\partial_{t t} u-\Delta_{x} u+u= \pm|u|^{\alpha} u \\
\left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X)
\end{array}\right.
$$

Same role of parameter α.

- $X=\mathbf{R}^{d} \rightarrow$ P.Brenner, H.Pecher, C.Morawetz,
C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
$\begin{aligned} \text { - } & X=\mathcal{M}^{k} \rightarrow \text { global existence (J.-M. Delort, } \\ & \text { J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved. } \\ \text { - } & X=R^{d} \times \mathcal{M}^{k} \rightarrow \text { difficulties when one try to apply the method used } \\ & \text { for (NLS). }\end{aligned}$

$$
(\mathrm{NLKG}):\left\{\begin{array}{l}
\partial_{t t} u-\Delta_{X} u+u= \pm|u|^{\alpha} u \\
\left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X)
\end{array}\right.
$$

Same role of parameter α.

- $X=\mathbf{R}^{d} \rightarrow$ P.Brenner, H.Pecher, C.Morawetz, C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- $X=\mathcal{M}^{k} \rightarrow$ global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- $X=\mathrm{R}^{d} \times \mathcal{M}^{k} \rightarrow$ difficulties when one try to apply the method used

(NLKG)

(NLKG): $\left\{\begin{array}{l}\partial_{t t} u-\Delta_{x} u+u= \pm|u|^{\alpha} u, \\ \left(u(0, .), \partial_{t} u(0, .)\right)=\left(u_{0}, u_{1}\right) \in H^{1}(X) \times L^{2}(X) .\end{array}\right.$
Same role of parameter α.

- $X=\mathbf{R}^{d} \rightarrow$ P.Brenner, H.Pecher, C.Morawetz, C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- $X=\mathcal{M}^{k} \rightarrow$ global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- $X=\mathbf{R}^{d} \times \mathcal{M}^{k} \rightarrow$ difficulties when one try to apply the method used for (NLS).

The difficulties

- Order 2 in time: one need to work with $U=\binom{u}{\partial_{t} u}$, in $H^{1} \times L^{2}$.
- The propagator is unitary on $H^{1} \times L^{2}$, but not scaling invariant

$$
S(t)=\left(\begin{array}{cc}
\cos (t \cdot \sqrt{1-\Delta}) & \frac{\sin (t \cdot \sqrt{1-\Delta})}{\sqrt{1-\Delta}} \\
-\sin (t \cdot \sqrt{1-\Delta}) \cdot(\sqrt{1-\Delta}) & \cos (t \cdot \sqrt{1-\Delta})
\end{array}\right)
$$

We want to prove

$$
\lim _{|t| \rightarrow \pm \infty}\left\|U(t)-S(t)\binom{f_{ \pm}}{g_{ \pm}}\right\|_{H^{1} \times L^{2}}=0
$$

- Strichartz estimates on \mathbf{R}^{3} exist but are stated in Besov spaces:

$$
0 \leq 2 / q_{j}=3 / r_{j}-3 / 2<1, s_{j}=s_{j}\left(r_{j}\right)
$$

$$
\|u\|_{L^{q_{1}} B_{r_{1}, 2}^{s}} \leq C\left(r_{1}, r_{2}\right)\left(\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}+\|F\|_{L^{p_{1}^{\prime}} B_{r_{2}^{\prime}}^{1-s_{j}}}\right) .
$$

Idea of proof

We still work on the basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

Each u_{k} is solution to

$$
\partial_{t t} u_{k}-\Delta_{\mathbf{R}^{d}} u_{k}+u_{k}+\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot), \partial_{t} u_{k}(0, \cdot)=u_{k, 1}(\cdot)
$$

Problems: estimates will depend on λ_{k}. Scaling type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to Lebesgue.

For eack k
\square valid,

Idea of proof

We still work on the basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

Each u_{k} is solution to

$$
\partial_{t t} u_{k}-\Delta_{\mathbf{R}^{d}} u_{k}+u_{k}+\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot), \partial_{t} u_{k}(0, \cdot)=u_{k, 1}(\cdot)
$$

Problems: estimates will depend on λ_{k}. Scaling type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to Lebesgue.

For eack k

Consequence: for some particular pairs, such that the embeddings are valid,

Idea of proof

We still work on the basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

Each u_{k} is solution to

$$
\partial_{t t} u_{k}-\Delta_{\mathbf{R}^{d}} u_{k}+u_{k}+\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot), \partial_{t} u_{k}(0, \cdot)=u_{k, 1}(\cdot)
$$

Problems: estimates will depend on λ_{k}. Scaling type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to Lebesgue.

For eack k
$C_{0}\left(\lambda_{k}\right)\left\|u_{k}\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left[\sqrt{1+\lambda_{k}}\left\|u_{k, 0}\right\|_{L^{2}}+\left\|u_{k, 0}\right\|_{\dot{H}^{1}}+\left\|u_{k, 1}\right\|_{L^{2}}+\left\|F_{k}\right\|_{L_{L}^{1} L_{x}^{2}}\right]$
Consequence: for some particular pairs, such that the embeddings are valid,

$$
\|u\|_{L_{t}^{q_{1}} L_{x}^{r_{1}} H_{y}^{\gamma}} \leq C\left[\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}+\|F\|_{L_{t}^{1} L_{x, y}^{2}}\right]
$$

Idea of proof

We still work on the basis of $L^{2}\left(\mathcal{M}^{k}\right)$ given by $-\Delta_{\mathcal{M}^{k}} \Phi_{k}=\lambda_{k} \Phi_{k}$:

$$
u(t, x, y)=\sum_{k} u_{k}(t, x) \Phi_{k}(y)
$$

Each u_{k} is solution to

$$
\partial_{t t} u_{k}-\Delta_{\mathbf{R}^{d}} u_{k}+u_{k}+\lambda_{k} u_{k}=F_{k}, u_{k}(0, \cdot)=u_{k, 0}(\cdot), \partial_{t} u_{k}(0, \cdot)=u_{k, 1}(\cdot)
$$

Problems: estimates will depend on λ_{k}. Scaling type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to Lebesgue.

For eack k
$C_{0}\left(\lambda_{k}\right)\left\|u_{k}\right\|_{L_{t}^{q_{1}} L_{x}^{r_{1}}} \leq C\left[\sqrt{1+\lambda_{k}}\left\|u_{k, 0}\right\|_{L^{2}}+\left\|u_{k, 0}\right\|_{\dot{H}^{1}}+\left\|u_{k, 1}\right\|_{L^{2}}+\left\|F_{k}\right\|_{L_{L}^{1} L_{x}^{2}}\right]$
Consequence: for some particular pairs, such that the embeddings are valid,

$$
\|u\|_{L_{t}^{q_{1}} L_{x, y}^{r_{1}}} \leq\|u\|_{L_{t}^{q_{1}} L_{x}^{r_{1}} H_{y}^{\gamma}} \leq C\left[\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}+\|F\|_{L_{t}^{1} L_{x, y}^{2}}\right] .
$$

Theorem (H'-Visciglia '17)

Consider one of the following situations

$$
\begin{aligned}
& \mathbf{R} \times \mathcal{M}^{2} \text { and } \alpha=4, \\
& \mathbf{R}^{2} \times \mathcal{M}^{1} \text { and } \alpha \in[2,4]
\end{aligned}
$$

then there exists $\delta>0$ s.t. any data $\left(u_{0}, u_{1}\right)$ with $\left\|u_{0}\right\|_{H_{x, y}^{1}}+\left\|u_{1}\right\|_{L_{x, y}^{2}}<\delta$ produces a unique global solution

$$
u \in C^{0}\left(\mathbf{R}, H^{1}\right) \cap C^{1}\left(\mathbf{R}, L^{2}\right) \cap L^{\alpha+1}\left(\mathbf{R}, L^{2 \alpha+2}\right) .
$$

Moreover, those solutions scatter to a linear solution in H^{1}.

General statement $k=1,2$ and $d+k \in[3,6]$, and $\frac{4}{d} \leq \alpha \leq \frac{4}{d+k-2}$.

Scattering follows from $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}<\infty$:

$$
\begin{gathered}
U(t)=S(t)\binom{f}{g}+\int_{0}^{t} S(t-s)\binom{0}{ \pm|u|^{\alpha} u} d s \\
V(t)=S(-t) U(t)=\binom{f}{g}+\int_{0}^{t} S(-s)\binom{0}{ \pm|u|^{\alpha} u} d s .
\end{gathered}
$$

$V(t)$ exists/has some sense if it converges in $H^{1} \times L^{2}$. We prove that

Scattering follows from $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}<\infty$:

$$
\begin{gathered}
U(t)=S(t)\binom{f}{g}+\int_{0}^{t} S(t-s)\binom{0}{ \pm|u|^{\alpha} u} d s \\
V(t)=S(-t) U(t)=\binom{f}{g}+\int_{0}^{t} S(-s)\binom{0}{ \pm|u|^{\alpha} u} d s .
\end{gathered}
$$

$V(t)$ exists/has some sense if it converges in $H^{1} \times L^{2}$. We prove that $\lim _{t, \tau \rightarrow \infty}\|V(t)-V(\tau)\|_{H^{1} \times L^{2}}=0$:

$$
\begin{aligned}
\|V(t)-V(\tau)\|_{H^{1} \times L^{2}} & \leq C \int_{t}^{\tau}\left\|\binom{0}{ \pm|u|^{\alpha} u d s}\right\|_{H^{1} \times L^{2}} d s \\
& \leq C \int_{t}^{\tau}\left\||u|^{\alpha} u\right\|_{L^{2}} d s \\
& \leq C\|u\|_{L^{\alpha+1}\left([t, \tau], L^{2 \alpha+2}\right)}^{\alpha+1}
\end{aligned}
$$

which tends to zero as t, τ tend to infinity.

What about large data for NLKG ? (with L. Forcella - EPFL, Lausanne) "simpler" case: defocusing, H^{1}-subcritical α.
Try to exploit the "flat" variables carrying the dispersive behaviour. Use of concentration-compactness method ("à la Kenig-Merle"). Global existence is obtained with classical fixed point argument and conservation laws.
Theorem, from Forcella-H. '17]

such that

What about large data for NLKG ? (with L. Forcella - EPFL, Lausanne) "simpler" case: defocusing, H^{1}-subcritical α.
Try to exploit the "flat" variables carrying the dispersive behaviour. Use of concentration-compactness method ("à la Kenig-Merle"). Global existence is obtained with classical fixed point argument and conservation laws.

Theorem, from [Forcella-H. '17]

Assume $d=1$ and $\alpha>4$ or $2 \leq d \leq 4$ and $4 / d<\alpha<4 /(d-1)$. Let $u \in C\left(\mathbf{R}, H^{1}\right) \cap C^{1}\left(R ; L^{2}\right) \cap L^{\alpha+1}\left(\mathbf{R} ; L^{2(\alpha+1)}\right)$ be the unique global solution to (NLKG): then for $t \rightarrow \pm \infty$ there exist $\left(f^{ \pm}, g^{ \pm}\right) \in H^{1} \times L^{2}$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|u(t, x)-u^{ \pm}(t, x)\right\|_{H^{1}}+\left\|\partial_{t} u(t, x)-\partial_{t} u^{ \pm}(t, x)\right\|_{L^{2}}=0
$$

where $u^{ \pm}(t, x, y) \in H^{1}\left(\mathbf{R}^{d} \times \mathbf{T}\right) \times L^{2}\left(\mathbf{R}^{d} \times \mathbf{T}\right)$ are the corresponding solutions to (LKG) with initial data $\left(f^{ \pm}, g^{ \pm}\right)$.

Steps

Is detailed in [Nakanishi-Schlag '11] for pure euclidean case.

- Prove that for $\left\|\nu_{0}\right\|_{H^{1}}<E_{0}$ small enough, H^{1}-scattering holds.
- Assume there is no H^{1}-scattering for solutions above some critical energy $E_{c} \geq E_{0}$. For those solutions $\|u\|_{L_{+}^{\alpha+1} L_{x}^{2 \alpha+2}}=+\infty$.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory). Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia
- Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_{c}=+\infty$.

Steps

Is detailed in [Nakanishi-Schlag '11] for pure euclidean case.

- Prove that for $\left\|u_{0}\right\|_{H^{1}}<E_{0}$ small enough, H^{1}-scattering holds.

Assume there is no H^{1}-scattering for solutions above some critical energy $E_{C} \geq E_{0}$. For those solutions $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}=+\infty$.

Build such critical element with profile decomnosition and try to understand its particular properties (compactness of trajectory). Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia

- Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_{c}=+\infty$.

Steps

Is detailed in [Nakanishi-Schlag '11] for pure euclidean case.

- Prove that for $\left\|u_{0}\right\|_{H^{1}}<E_{0}$ small enough, H^{1}-scattering holds.
- Assume there is no H^{1}-scattering for solutions above some critical energy $E_{c} \geq E_{0}$. For those solutions $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}=+\infty$.

[^0]
Steps

Is detailed in [Nakanishi-Schlag '11] for pure euclidean case.

- Prove that for $\left\|u_{0}\right\|_{H^{1}}<E_{0}$ small enough, H^{1}-scattering holds.
- Assume there is no H^{1}-scattering for solutions above some critical energy $E_{c} \geq E_{0}$. For those solutions $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}=+\infty$.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory). Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia...
- Exploit those properties, together with adapted "Morawetz estimates' instead of Virial estimates, to obtain a contradiction and deduce that

Steps

Is detailed in [Nakanishi-Schlag '11] for pure euclidean case.

- Prove that for $\left\|u_{0}\right\|_{H^{1}}<E_{0}$ small enough, H^{1}-scattering holds.
- Assume there is no H^{1}-scattering for solutions above some critical energy $E_{c} \geq E_{0}$. For those solutions $\|u\|_{L_{t}^{\alpha+1} L_{x, y}^{2 \alpha+2}}=+\infty$.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory). Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia...
- Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_{c}=+\infty$.

Profile decomposition theorem

General scheme from [Banica-Visciglia '16]

1. Any general term of a "bounded" sequence $\overrightarrow{u_{n}}=\left(u_{n}, \partial_{t} u_{n}\right)$ of solutions to (LKG) can be written as a sum of k linear "profiles" + a small remainder,for any choice of $k>1$. Profiles are concentrated in sequence of points sufficiently uncorrelated and "flying to infinity".
2. The remainder can be estimated in some good Strichartz norm.
3. Pythagorician expansion of "energy" of $\overrightarrow{u_{n}}$ holds.

Profile decomposition theorem

General scheme from [Banica-Visciglia '16]

1. Any general term of a "bounded" sequence $\overrightarrow{u_{n}}=\left(u_{n}, \partial_{t} u_{n}\right)$ of solutions to (LKG) can be written as a sum of k linear "profiles" + a small remainder,for any choice of $k>1$. Profiles are concentrated in sequence of points sufficiently uncorrelated and "flying to infinity".
2. The remainder can be estimated in some good Strichartz norm.
3. Pythagorician expansion of "energy" of $\overrightarrow{u_{n}}$ holds.

$$
\vec{u}_{n}(t, x, y)=\sum_{1 \leq j<k} \vec{v}^{j}\left(t-t_{n}^{j}, x-x_{n}^{j}, y\right)+\vec{R}_{n}^{k}(t, x, y),
$$

where $\forall j \neq k,\left(\left|t_{n}^{k}-t_{n}^{j}\right|+\left|x_{n}^{k}-x_{n}^{j}\right|\right) \xrightarrow{n \rightarrow+\infty}+\infty$.
Moreover, the space-time translation sequence satisfies:

$$
\text { either }\left(t_{n}, x_{n}\right)=(0,0) \text { or }\left(t_{n},\left|x_{n}\right|\right) \rightarrow(\pm \infty,+\infty)
$$

Profile decomposition theorem

General scheme from [Banica-Visciglia '16]

1. Any general term of a "bounded" sequence $\vec{u}_{n}=\left(u_{n}, \partial_{t} u_{n}\right)$ of solutions to (LKG) can be written as a sum of k linear "profiles" + a small remainder,for any choice of $k>1$. Profiles are concentrated in sequence of points sufficiently uncorrelated and "flying to infinity".
2. The remainder can be estimated in some good Strichartz norm.
3. Pythagorician expansion of "energy" of \vec{u}_{n} holds.

For any $q \in\left(2,2^{*}\right)$,
$\lim _{k \rightarrow \pm \infty} \limsup _{n \rightarrow \pm \infty}\left\|R_{n}^{k}\right\|_{L^{\infty} L^{q}}=0 \xrightarrow{\text { interpolation }} \lim _{k \rightarrow \pm \infty} \limsup _{n \rightarrow \pm \infty}\left\|R_{n}^{k}\right\|_{L^{\alpha+1} L^{2 \alpha+2}}=0$

Profile decomposition theorem

General scheme from [Banica-Visciglia '16]

1. Any general term of a "bounded" sequence $\overrightarrow{u_{n}}=\left(u_{n}, \partial_{t} u_{n}\right)$ of solutions to (LKG) can be written as a sum of k linear "profiles" + a small remainder,for any choice of $k>1$. Profiles are concentrated in sequence of points sufficiently uncorrelated and "flying to infinity".
2. The remainder can be estimated in some good Strichartz norm.
3. Pythagorician expansion of "energy" of \vec{u}_{n} holds.

As $n \rightarrow+\infty$,

$$
\left\|\vec{u}_{n}(0, x, y)\right\|_{H^{1} \times L^{2}}^{2}=\sum_{1 \leq j<k}\left\|\vec{v}_{n}^{j}\right\|_{H^{1} \times L^{2}}^{2}+\left\|\vec{R}_{n}^{k}\right\|_{H^{1} \times L^{2}}^{2}+o(1)
$$

and

$$
\left\|u_{n}(0, x, y)\right\|_{L^{\alpha+2}}^{\alpha+2}=\sum_{1 \leq j<k}\left\|v_{n}^{j}(0, x, y)\right\|_{L^{\alpha+2}}^{\alpha+2}+\left\|R_{n}^{k}\right\|_{L^{\alpha+2}}^{\alpha+2}+o(1)
$$

Construction of minimal element

Aim: Construct a non-trivial minimal global non-scattering solution with some compactness property.

Critical energy:

$$
\begin{aligned}
& E_{c}=\sup \left\{E>0 \mid(f, g) \in H^{1} \times L^{2} \text { and } E(f, g)<E\right. \\
& \left.\quad \Rightarrow u(f, g)(t) \in L^{\alpha+1} L^{2(\alpha+1)}<+\infty\right\}
\end{aligned}
$$

Theorem from [Forcella-H. '17]

There exists an initial datum $\left(f_{c}, g_{c}\right) \in H^{1} \times L^{2}$ such that the corresponding solution $u_{c}(t)$ to (NLKG) is global and
$\left\|u_{c}\right\|_{L^{\alpha+1} L^{2 \alpha+2}}=+\infty$. Moreover there exists a path $x(t) \in \mathbf{R}^{d}$ such that $\left\{u_{c}(t, x-x(t), y), \partial_{t} u_{c}(t, x-x(t), y), t \in \mathbf{R}_{+}\right\}$is relatively compact in $H^{1} \times L^{2}$.

How ? Use Profile decomposition theorem and some technical lemmas.

Construction of minimal element

Aim: Construct a non-trivial minimal global non-scattering solution with some compactness property.

Critical energy:

$$
\begin{aligned}
& E_{c}=\sup \left\{E>0 \mid(f, g) \in H^{1} \times L^{2} \text { and } E(f, g)<E\right. \\
& \left.\quad \Rightarrow u(f, g)(t) \in L^{\alpha+1} L^{2(\alpha+1)}<+\infty\right\}
\end{aligned}
$$

Theorem from [Forcella-H. '17]

There exists an initial datum $\left(f_{c}, g_{c}\right) \in H^{1} \times L^{2}$ such that the corresponding solution $u_{c}(t)$ to (NLKG) is global and $\left\|u_{c}\right\|_{L^{\alpha+1} L^{2 \alpha+2}}=+\infty$. Moreover there exists a path $x(t) \in \mathbf{R}^{d}$ such that $\left\{u_{c}(t, x-x(t), y), \partial_{t} u_{c}(t, x-x(t), y), t \in \mathbf{R}_{+}\right\}$is relatively compact in $H^{1} \times L^{2}$.

How ? Use Profile decomposition theorem and some technical lemmas.

Cooking a contradiction

Several technical results are needed. Ingredient one. Ingredient two. Ingredient three.

Cooking a contradiction

Several technical results are needed.
Ingredient one.

Finite propagation speed (FPS)

Let u be the solution to (NLKG) with Cauchy datum (f, g) vanishing on $B\left(x_{0}, r\right)^{c} \times \mathbf{T}$, for some $r>0$. Then $\vec{u}(t)$ vanishes on

$$
K\left(x_{0}, r\right):=\left\{t \geq 0, x \in B\left(x_{0}, r+t\right)^{c}, y \in \mathbf{T}\right\} .
$$

Ingredient two. Ingredient three.

Cooking a contradiction

Several technical results are needed.
Ingredient one. (FPS) Ingredient two.

"Energy concentration" given by GWP + relatively compactness

Let $u(t)$ be a nontrivial solution to (NLKG) such that $\left\{u(t, x-x(t), y), \partial_{t} u(t, x-x(t), y)\right\}_{t} \in \mathbf{R}$ is relatively compact in $H^{1} \times L^{2}$. Then for any $A>0$ there exist $C(A)>0$ and $R=R(A)>0$ such that

$$
\sup _{t} \int_{t}^{t+A} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R}|u|^{\alpha+2} d x d y d s \geq C(A)
$$

As a corollary, we also obtain a lower bound for $|u|^{2}$ instead of $|u|^{\alpha+2}$.
Ingredient three.

Cooking a contradiction

Several technical results are needed.
Ingredient one. (FPS)
Ingredient two. Energy concentration Ingredient three.

$1 d$-Morawetz estimates (inspired by Nakanishi)

"Multiply the equation with some quantity M and integrate everything in some time-space region. Then, handle each term to find a bound"
$\int_{\mathbf{R}} \int_{\mathbf{R}^{d} \times \mathbf{T}} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)} \leq C$.

From Morawetz:

$$
C \geq \int_{2}^{T} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)}
$$

As $T \rightarrow \infty$, the last term is equivalent to a divergent term

CONTRADICTION

Conclusion: $E_{c}=+\infty$, which means that all solutions scatter.

From Morawetz:

$$
C \geq \int_{2}^{T} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)}
$$

(FPS) $\rightarrow|x| \leq|x-x(t)|+|x(t)-x(0)|+|x(0)| \leq R+t+c_{0}+c_{1}$.

As $T \rightarrow \infty$, the last term is equivalent to a divergent term
CONTRADICTION.

Conclusion: $E_{c}=+\infty$, which means that all solutions scatter.

$$
\begin{aligned}
C & \geq \int_{2}^{T} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)} \\
\rightarrow C & \geq \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} \int_{j-1}^{j} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \min \left(|u|^{2},|u|^{\alpha+2}\right) \\
C & \geq \widetilde{C} \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} .
\end{aligned}
$$

(FPS) $\rightarrow|x| \leq|x-x(t)|+|x(t)-x(0)|+|x(0)| \leq R+t+c_{0}+c_{1}$.
Concentration
As $T \rightarrow \infty$, the last term is equivalent to a divergent term

$$
\begin{aligned}
& C \geq \int_{2}^{T} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)} \\
& \rightarrow C \geq \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} \int_{j-1}^{j} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \min \left(|u|^{2},|u|^{\alpha+2}\right) \\
& C \geq \widetilde{C} \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} . \\
&(\text { FPS }) \rightarrow|x| \leq|x-x(t)|+|x(t)-x(0)|+|x(0)| \leq R+t+c_{0}+c_{1} .
\end{aligned}
$$

Concentration

As $T \rightarrow \infty$, the last term is equivalent to a divergent term $\int_{2}^{\infty} \frac{1}{t \log (t)} d t$.

CONTRADICTION.

$$
\begin{aligned}
C & \geq \int_{2}^{T} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \frac{\min \left(|u|^{2},|u|^{\alpha+2}\right)}{\langle t\rangle \log (|t|+2) \log \left(\max \left(\left|x_{1}\right|-t, 2\right)\right)} \\
\rightarrow C & \geq \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} \int_{j-1}^{j} \int_{\mathbf{T}} \int_{|x-x(t)| \leq R} \min \left(|u|^{2},|u|^{\alpha+2}\right) \\
& C \geq \widetilde{C} \sum_{j=3}^{[T]} \frac{1}{\langle j\rangle \log (j+2)} . \\
(\mathrm{FPS}) \rightarrow & |x| \leq|x-x(t)|+|x(t)-x(0)|+|x(0)| \leq R+t+c_{0}+c_{1} .
\end{aligned}
$$

As $T \rightarrow \infty$, the last term is equivalent to a divergent term $\int_{2}^{\infty} \frac{1}{t \log (t)} d t$.

CONTRADICTION.

Conclusion: $E_{c}=+\infty$, which means that all solutions scatter.

THANK YOU

\qquad

[^0]: - Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory). Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag. Banica-Visciglia.
 - Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that

